基于生态-文化多维价值复合的线性文化遗产跨层网络格局构建
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

天津市哲学社会科学规划青年项目(TJGLQN23-011)


Construction of cross-layer network patterns for linear cultural heritage based on the integration of ecological-cultural multi-dimensional values
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 文章评论
    摘要:

    构建生态-文化复合跨层网络是实现线性文化遗产多维价值协同表达的重要路径。以生态与文化价值嵌套特征显著的大运河天津段流经的行政区域为典型案例,基于社会生态系统理论框架,融合形态学空间格局分析、电路理论模型与社会网络分析等跨学科方法,提出"识别-连接-耦合-优化"的跨层网络构建路径,突破传统以物理结构整合为导向的单维建模范式,推动网络研究从结构整合向价值整合转型。研究结果表明:(1)大运河天津段流域生态源地在空间尺度上存在明显的规模差异与布局不均现象;文化源地则沿大运河沿岸呈现大分散、小集中的分布特征。(2)区域内生态廊道呈现"东北部密集、西南与西北部稀疏"的总体格局,且部分边缘区域的小型生态源地存在空间割裂与生态孤岛化的风险;文化廊道网络以大运河为核心轴线呈放射状向外围拓展。(3)生态-文化复合价值的功能性子群呈现出明显的跨行政边界分布格局,据此识别并构建6组、3类(潜力型、失衡型、示范型)生态-文化多维价值复合的跨层网络结构。以此为依据,分别提出单一网络与跨层网络格局优化策略,旨在为线性文化遗产自然资源与文化遗产的融合保护、空间治理及规划管控提供科学依据与技术支持。

    Abstract:

    The construction of ecological-cultural composite cross-layer networks represents a crucial pathway for realizing the synergistic expression of the multi-dimensional values embedded in linear cultural heritage. This study takes the administrative areas traversed by the Tianjin section of the Grand Canal as a representative case, notable for its pronounced nesting of ecological and cultural values. Grounded within the theoretical framework of social-ecological system, the research adopts an interdisciplinary methodology that combines morphology spatial pattern analysis, circuit theory model, and social network analysis. Through the integration of these diverse analytical tools, the research proposes a four-step cross-layer network construction pathway termed "identification-connection-coupling-optimization". This innovative approach fundamentally transcends the limitations of conventional modeling paradigms that primarily focus on physical or structural connectivity, and instead pivots toward a value-centric model that integrates ecological function and cultural significance within a unified analytical framework. The results showed that: (1) the ecological source areas in the Tianjin section of the Grand Canal basin have obvious scale heterogeneity and an uneven layout on the spatial scale, while the cultural source areas are primarily distributed along the coast of the Tianjin section of the Grand Canal with the characteristics of large-scale dispersion and small-scale concentration. (2) The ecological corridors in the Tianjin section of the Grand Canal show a general pattern of "dense in the northeast, while sparse in the southwest and northwest", and this imbalance highlights a tangible risk of spatial fragmentation and ecological isolation of small ecological sources in some peripheral or marginal areas; meanwhile, the network of cultural corridors is expanding radially to the periphery with the Tianjin section of the Grand Canal as the core axis, forming a spatial distribution characteristic of "wide in the southern reaches and narrow in the northern sections". (3) The functional subgroups of ecological-cultural composite values show an obvious distribution pattern across administrative boundaries, highlighting the importance of multi-jurisdictional coordination. Based on the synergistic expression and spatial interaction of these values, 6 cross-layer network groups are identified and categorized into 3 distinct types: potential type, unbalanced type, and demonstration type. Corresponding optimization strategies are proposed for both single-layer and integrated network patterns. These strategies aim to enhance spatial coherence, reinforce ecological and cultural synergies, and inform the integrated conservation, spatial governance, and adaptive planning of linear cultural heritage systems. This study thus offers a robust scientific foundation and practical toolkit for promoting value-oriented, cross-scalar management of natural and cultural resources in complex heritage landscapes.

    参考文献
    相似文献
    引证文献
引用本文

王倩雯,周航,张芮嘉,王宇宁,赵广宇.基于生态-文化多维价值复合的线性文化遗产跨层网络格局构建.生态学报,2025,45(24):12470~12483

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数: