面向生物多样性保护的生态网络研究:2004年以来中国研究趋势和展望
DOI:
作者:
作者单位:

1.西南交通大学建筑学院;2.西南交通大学环境科学与工程学院

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目面上项目(52078346),四川省科学技术厅重点研发计划区域创新(2024YFHZ0100),GEF7中国绿色与碳中心和城市项目成都项目(CD-CS3)


Ecological Networks for Biodiversity Conservation: Research Trends and Prospects in China Since 2004
Author:
Affiliation:

1.School of Architecture, Southwest Jiaotong University;2.School of Environmental Science and Engineering, Southwest Jiaotong University

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 文章评论
    摘要:

    生态网络构建是区域生物多样性保护的重要策略,其技术特点在于能够整合物种迁徙扩散的生态过程,同时评估人类活动对生态系统的影响,其研究进展与方法创新对完善生物保护具有重要理论与实践意义。本文基于CNKI和Web of Science核心合集数据库,检索并筛选2004—2024年我国生物多样性保护领域的生态网络文献300篇(中文143篇,英文157篇)。采用文献计量法,从地理空间分布、空间尺度、生态系统类型、焦点物种及网络构建技术等方面系统回顾,旨在揭示研究热点与方法局限,为生态网络研究的理论发展与技术优化提供科学依据。研究表明:1)生态网络研究总体呈现显著增长趋势。空间分布上集中于云南、四川等旗舰物种密集区及京津冀、长三角等科研集聚区,研究尺度多聚焦于市县级中小尺度(72.8%),城市生态系统占比最高(53%)。2)约半数研究未界定焦点物种;在明确物种的研究中,哺乳动物占53.62%,同时69.57%的研究聚焦珍稀/保护物种,例如,大熊猫(Ailuropoda melanoleuca)、亚洲象(Elephas maximus)等。3)研究方法普遍遵循“源地识别—阻力面构建—廊道提取—生态网络优化”的框架,其中廊道提取以最小累积阻力模型(63.3%)和电路理论(32.3%)为主流。网络优化策略多依靠识别与修复生态夹点(Pinch point)和断裂点(Barrier points)以强化连通性,在开展网络评价的研究(86篇)中,以基于图论的网络结构评价(44.19%)和景观格局指数评价(31.40%)为主。本文发现,现有研究存在焦点物种选择单一(忽略普通物种)、焦点物种数据缺失及保护成效验证薄弱等问题,建议未来在生态网络构建与优化中拓展焦点物种范围,建设“珍稀/保护物种+普通物种”的复合保护网络,尤其在城市生态系统中更多关注中小型乡土物种;同时,探索生成式人工智能(Generative artificial intelligence,GenAI)技术,以丰富焦点物种数据库,进一步整合公民科学、众包数据及自动监测系统等低成本新技术,构建多物种动态监测系统,为形成我国生物多样性保护生态网络、完善区域保护政策提供科学依据。

    Abstract:

    Constructing ecological networks was a crucial strategy for regional biodiversity conservation. Its technical strength lay in integrating ecological processes like species migration and dispersal while assessing the impacts of human activities on ecosystems. Research advancements and methodological innovations in this field held significant theoretical and practical importance for enhancing biological conservation. Based on the CNKI and Web of Science Core Collection (WoSCC) databases, this study retrieved and screened 300 papers (143 in Chinese, 157 in English) addressing ecological network research in China's biodiversity conservation from 2004 to 2024. Through bibliometric analysis, we systematically reviewed geographical distribution patterns, spatial scale classifications, ecosystem type differentiation, focal species selection, and network construction technologies. The aim was to reveal research hotspots and methodological limitations, providing a scientific basis for theoretical development and technological optimization in ecological network research. Key findings included: 1) Ecological network studies demonstrated significant growth trends, concentrated in flagship species-rich regions (e.g., Yunnan, Sichuan) and research-intensive urban clusters (e.g., Beijing-Tianjin-Hebei (BTH), Yangtze River Delta (YRD)). 72.8% of studies focused on county/municipal-level medium-small scales (1,000-50,000 km2), with urban ecosystems predominating (53%). 2) Approximately half of the reviewed literature failed to define focal species. Among studies specifying focal species, mammals constituted 53.62%, and 69.57% prioritized rare/protected species, such as the giant panda (Ailuropoda melanoleuca) and Asian elephant (Elephas maximus). 3) Methodology generally followed the "habitat identification - resistance surface construction - corridor extraction - ecological network optimization" framework. Corridor extraction primarily employed the Minimum Cumulative Resistance model (MCR, 63.3%) and Circuit Theory (32.3%). Network optimization often relied on identifying and restoring ecological pinch points and barrier points to enhance connectivity. Among the 86 studies conducting network evaluation, graph theory-based structural analysis (44.19%) and landscape pattern indices (31.40%) were predominant. This study identified existing limitations, including narrow focal species selection (neglecting common species), deficiencies in focal species data, and insufficient verification of conservation effectiveness. We recommended future efforts to: (1) broaden the scope of focal species in network construction and optimization, establishing composite conservation networks integrating "rare/protected species + common species", particularly focusing more on small-to-medium-sized native species in urban ecosystems; (2) explore generative artificial intelligence (GenAI) technologies to enrich focal species databases; and (3) further integrate low-cost novel technologies such as citizen science, crowdsourced data, and automated monitoring systems to build multi-species dynamic monitoring systems. These advancements would provide a scientific basis for forming China's biodiversity conservation ecological network and refining regional conservation policies.

    参考文献
    相似文献
    引证文献
引用本文

陈春谛,冯伟,高婧格,张哲,张涵.面向生物多样性保护的生态网络研究:2004年以来中国研究趋势和展望.生态学报,,(). http://dx. doi. org/[doi]

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数: