基于SHAP可解释性机器学习的四川生境质量时空演变特征及关键驱动因子阈值分析
作者:
作者单位:

重庆师范大学地理与旅游学院

作者简介:

通讯作者:

中图分类号:

基金项目:


Spatiotemporal evolution characteristics and critical driving factor threshold analysis of habitat quality in Sichuan province based on SHAP-interpretable machine learning
Author:
Affiliation:

School of Geography and Tourism,Chongqing Normal University

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 文章评论
    摘要:

    生境质量是维系生态系统稳定和健康运行的基础,揭示其时空演化规律及关键影响因子作用机制与临界阈值,也是实现区域可持续发展基础。文章以四川为例,基于2000-2020年土地利用数据,运用InVEST模型、耦合XGBoost(eXtreme Gradient Boosting)-SHAP(Shapley Additive EXPlanations),定量评估了2000-2020年土地利用格局变化、生境质量时空分异特征、关键影响因素和及其临界阈值。结果表明:(1)2000-2020年四川建设用地、林地面积增加,耕地、草地减少,水域和未利用地变化较小;生境质量均值呈小幅下降趋势,呈现“西高东低”,以成都为核心向外辐射提升的空间格局;(2)2000-2020年人口密度、高程、植被归一化指数、年均温度、坡度是生境质量的关键影响因子,其中人口密度、高程是主导影响因子,且人口密度的贡献度大于高程;(3)生境质量与影响因子之间呈多样化特征,存在非线性正相关(植被归一化指数、坡度等)、非线性负相关(年均气温、道路距离等)等多种关系,临界阈值也具有单段阈值(坡度等)、多段阈值(高程、年均气温等)等多种情况。基于生境质量主要影响因子及临界阈值提出区域生境质量管理措施,可在有限投入下提升生境质量的治理效能,研究结果可为四川生态环境高质量发展提供科学参考。

    Abstract:

    Habitat quality constitutes the fundamental basis for maintaining ecosystem stability and healthy functioning. Revealing its spatiotemporal evolution patterns, key influencing mechanisms, and critical thresholds is essential for achieving regional sustainable development. Taking Sichuan Province as a case study, this research quantitatively assessed land use pattern changes (2000–2020), spatiotemporal differentiation characteristics of habitat quality, and critical influencing factors with their thresholds by integrating the InVEST model with XGBoost (eXtreme Gradient Boosting)-SHAP (Shapley Additive Explanations) coupling methodology. The results indicate: (1) From 2000 to 2020, Sichuan Province experienced an increase in construction land and forested areas, while cultivated land and grassland decreased, with minimal changes observed in unused land and water bodies. The mean habitat quality showed a slight decline, forming a spatial pattern characterized by “west-high-east-low,” with Chengdu as the core demonstrating outward radiative improvement. (2) Population density, elevation, NDVI (Normalized Difference Vegetation Index), annual mean temperature, and slope gradient were identified as primary influencing factors, where population density and elevation dominated, with population density exhibiting greater contribution than elevation. (3) Relationships between habitat quality and factors demonstrated diversified nonlinear characteristics: positive correlations (NDVI, slope) and negative correlations (annual mean temperature, distance to roads). Threshold effects manifested as single-segment (slope gradient) and multi-segment (elevation, annual mean temperature) patterns. Proposed habitat management measures based on dominant factors and thresholds can enhance governance efficiency under limited investments. The findings provide scientific references for advancing high-quality ecological development in Sichuan.

    参考文献
    相似文献
    引证文献
引用本文

邱大鹅,张军以,齐渴路,杨晓雪.基于SHAP可解释性机器学习的四川生境质量时空演变特征及关键驱动因子阈值分析.生态学报,,(). http://dx. doi. org/10.5846/stxb202503270704

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数: