基于CNN-GRU模型的干旱区绿洲植被时空动态预测方法研究——以青土湖绿洲为例
DOI:
作者:
作者单位:

1.河海大学水文水资源学院;2.水电水利规划设计总院

作者简介:

通讯作者:

中图分类号:

基金项目:

中国博士后科学基金,国家自然科学基金项目(面上项目,重点项目,重大项目),中国电力建设股份有限公司科技项目


Predicting spatiotemporal dynamics of oasis vegetation in arid regions using a CNN-GRU model: A case study of Qingtu Oasis
Author:
Affiliation:

1.College of Hydrology and Water Resources,Hohai University;2.China Renewable Energy Engineering Institute

Fund Project:

China Postdoctoral Science Foundation,The National Natural Science Foundation of China (General Program, Key Program, Major Research Plan),Technology Projects of Power Construction Corporation of China Limited

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 文章评论
    摘要:

    干旱区绿洲生态系统脆弱,植被动态对区域生态平衡和水资源可持续利用至关重要。然而,传统的植被指数预测方法往往假设其呈线性或平稳特征,难以充分捕捉实际环境中潜在的非线性和空间依赖性。本研究以青土湖绿洲为对象,综合利用遥感数据,包括归一化植被指数(Normalized Difference Vegetation Index, NDVI)、归一化水体指数(Normalized Difference Water Index, NDWI)以及盐分指数(Salinity Index, SI),并结合5×5邻域空间特征和3年时滞窗口,构建融合卷积神经网络(Convolutional Neural Network, CNN)与门控循环单元(Gated Recurrent Unit, GRU)的CNN-GRU深度学习模型,用于预测青土湖绿洲的NDVI时空变化。结果表明,与仅使用CNN或GRU的模型相比,CNN-GRU模型在决定性系数(R2)、均方根误差(RMSE)等指标上均表现更优,其中测试期R2可达0.88,尤其在高NDVI区和绿洲-荒漠过渡区的预测更为准确。邻域空间信息与三年时滞特征的输入,有效增强了模型对NDVI复杂非线性及空间关联性的捕捉能力。该研究结果为干旱区绿洲植被长期监测与生态环境管理提供了更可靠的技术支撑,也为深度学习与遥感技术在生态系统研究中的应用提供了新的思路和借鉴。

    Abstract:

    Oasis ecosystems in arid regions are fragile, and vegetation dynamics are crucial for regional ecological balance and sustainable water resource management. However, traditional methods for predicting vegetation indices often assume linearity or stationarity, struggling to capture the inherent nonlinearity and spatial dependencies in actual environmental conditions. This study focuses on the Qingtu Oasis, utilizing remote sensing data including the Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index (NDWI), and Salinity Index (SI). Integrating 5×5 neighborhood spatial features and a 3-year time lag window, a deep learning model fusing Convolutional Neural Network (CNN) and Gated Recurrent Unit (GRU), termed CNN-GRU, was developed to predict spatio-temporal NDVI variations. Results demonstrate that the CNN-GRU model outperforms standalone CNN or GRU models, achieving superior performance metrics such as Coefficient of Determination (R2) and Root Mean Square Error (RMSE). Specifically, the R2 reached 0.88 during the testing period, with particularly higher accuracy in high-NDVI areas and oasis-desert transition zones. Incorporating neighborhood spatial information and three-year lagged features significantly enhances the model’s capability to capture the complex nonlinearities and spatial correlations within NDVI dynamics. This research provides robust technical support for long-term vegetation monitoring and ecological management in arid oases, offering novel insights and a valuable reference for applying deep learning and remote sensing techniques in ecosystem studies.

    参考文献
    相似文献
    引证文献
引用本文

倪佳颖,丁锟奇,黄峰,衣鹏,高洁.基于CNN-GRU模型的干旱区绿洲植被时空动态预测方法研究——以青土湖绿洲为例.生态学报,,(). http://dx. doi. org/[doi]

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数: