中国省域农业碳排放权配额优化研究——基于ZSG-DDF模型
DOI:
作者:
作者单位:

中南林业科技大学

作者简介:

通讯作者:

中图分类号:

基金项目:

“国土资源评价与利用湖南省重点实验室开放课题资助,洞庭湖生态经济区土地利用变化碳排放及关联效应(编号:SYS-ZX-202406)”[Supported by the Open Topic of Hunan Key Laboratory of Land Resources Evaluation and Utilization]


Optimizing provincial agricultural carbon emission allowances in China: a ZSG-DDF model approach
Author:
Affiliation:

Central South University of Forestry and Technology

Fund Project:

Hunan Key Laboratory of Land Resources Evaluation and Utilization

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 文章评论
    摘要:

    为实现我国农业部门的碳达峰目标,亟需构建一套科学合理、兼顾公平与效率的农业碳排放权分配机制。本文构建了一个融合 ARIMA 时间序列预测与零和收益方向距离函数(ZSG-DDF)模型的农业碳排放配额优化框架,旨在碳排放总量固定约束下提升省域间碳资源配置效率。首先,基于 2005—2020 年农业投入产出数据,采用 ARIMA 模型对全国 30 个省市的相关指标进行预测,进而在“2030 年农业碳排放强度较 2005 年下降 60%”的国家目标约束下,测算各省市的初始碳排放配额。随后,运用 ZSG-DDF 模型对初始配额效率进行评估,结果表明仅江苏、福建、广东等 10 个省市为 DEA 有效,其余省市存在不同程度的效率缺口。通过 19 轮迭代动态再分配,在保持全国碳排放总量不变的前提下,实现了碳排放权从低效省市向高效省市的转移,最终所有省市均达到 DEA 有效状态。其中,山西、新疆等地区配额减少,江苏、广东等高效地区配额相应增加,形成了“向高效区域集中”的最优配置格局。在此基础上,提出三项政策建议:一是设定差异化的区域减排目标,二是构建绩效导向的动态配额调整机制,三是设立农业绿色转型专项基金。ARIMA–ZSG-DDF 组合方法不仅拓展了传统 DEA 模型的预测能力,也可直接处理非期望产出与资源总量约束问题,具有良好的跨行业与多层级可拓展性,可应用于工业、交通等领域以及市县尺度的碳治理,为碳达峰路径设计提供了量化支撑与政策工具。

    Abstract:

    To achieve carbon peaking targets in China's agricultural sector, it is urgent to establish a scientifically sound and equity-efficiency-balanced allocation mechanism for agricultural carbon emission rights. This study proposes an integrated optimization framework that combines the autoregressive integrated moving average (ARIMA) model with the zero-sum gains directional distance function (ZSG-DDF) model. The framework aims to improve the allocation efficiency of agricultural carbon emission quotas among provinces under a fixed national emission cap. First, based on agricultural input–output data from 2005 to 2020, the ARIMA model is employed to forecast relevant indicators for 30 provinces. Taking into account China's national goal of reducing agricultural carbon intensity by 60% in 2030 compared to 2005, initial provincial-level carbon emission quotas are calculated accordingly. The ZSG-DDF model is then applied to evaluate the efficiency of these initial allocations. The results reveal that only 10 provinces—including Jiangsu, Fujian, and Guangdong—are on the DEA efficiency frontier, while the remaining provinces exhibit varying degrees of inefficiency. To address these disparities, a 19-round dynamic reallocation process is conducted using the ZSG-DDF model. During this iterative process, emission quotas are transferred from inefficient provinces to efficient ones, while maintaining the national carbon cap. Eventually, all provinces reach DEA efficiency. Specifically, provinces such as Shanxi and Xinjiang experience quota reductions, whereas Jiangsu and Guangdong receive additional quotas, forming an optimal allocation pattern characterized by a shift toward high-efficiency regions. Based on these findings, three policy recommendations are proposed: (1) establish region-specific carbon reduction targets; (2) design a performance-oriented dynamic quota adjustment mechanism; and (3) create a special fund to support the green transformation of agriculture. The proposed ARIMA–ZSG-DDF hybrid framework not only extends the predictive capability of traditional DEA models but also enables direct handling of undesirable outputs and total resource constraints. Furthermore, the model is highly adaptable across industries and administrative levels, and can be extended to carbon governance in other emission-constrained sectors such as industry and transportation, as well as at the county or municipal level. Overall, this study provides a quantitative decision-support tool and policy-oriented methodological innovation for designing agricultural carbon peaking pathways in China, contributing to the realization of carbon neutrality goals at the sectoral and regional scales.

    参考文献
    相似文献
    引证文献
引用本文

陈佳乐,李春华.中国省域农业碳排放权配额优化研究——基于ZSG-DDF模型.生态学报,,(). http://dx. doi. org/[doi]

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数: