基于机器学习的兴安落叶松生态系统在不同时间尺度的碳通量模拟及影响因素分析
作者:
作者单位:

1.郑州大学地球科学与技术学院;2.中国气象科学研究院灾害天气国家重点实验室

作者简介:

通讯作者:

中图分类号:

基金项目:

中国气象局农业气象重点创新团队(CMA2024ZD02); 中国气象科学研究院基本科研业务费(2024Z001); 三北工程区陆地生态系统增汇潜力及风险评估(42141007); 生态保护修复增汇潜力与气候变化风险评估(2023Z023)


Carbon flux simulation and analysis of influencing factors in the Larix gmelinii ecosystem at different time scales based on machine learning
Author:
Affiliation:

1.School of Earth Science and Technology, Zhengzhou University;2.Chinese Academy of Meteorological Science

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 文章评论
    摘要:

    机器学习已经广泛用于生态系统研究。基于2014年1月1日至2018年12月31日兴安落叶松生态系统碳通量(NEE)观测数据,分析了其动态变化特征,并采用多种机器学习方法进行模拟。结果表明:(1)生长季兴安落叶松生态系统NEE日动态呈“U”变化,整体表现为碳汇,7月份碳汇能力最强,达67.57 g C m-2 月-1,9月至次年5月表现为碳源。(2)结构方程模型分析表明,兴安落叶松生态系统NEE的主要影响因子为潜热通量(LE)、净辐射(Rn)、叶面积指数(LAI)、空气温度(Ta)、相对湿度(RH)、饱和水汽压差(VPD)和土壤含水量(SWC),其中潜热通量和净辐射是影响NEE变化的最主导因素。(3)四种机器学习方法(RF、XGBoost、SVM、ANN)均能较准确地模拟兴安落叶松生态系统NEE,其中XGBoost和RF的模拟结果最为相近,但XGBoost在模拟精度和计算效率方面优于RF。研究结果为应用机器学习方法估算生态系统碳通量提供了依据。

    Abstract:

    Machine learning has been widely used in ecosystem research. This study analyzed the dynamic variation characteristics of the carbon flux (NEE) data from the Larix gmelinii ecosystem, observed from January 1, 2014, to December 31, 2018, and simulated the data using various machine learning methods. The results indicated that: (1) The daily dynamics of the NEE during the growing season of the Larix gmelinii ecosystem exhibited a "U" shape, with the ecosystem acting as a carbon sink overall. The carbon sink capacity was strongest in July, with a monthly average of 67.57 g C m-2. From September to May of the following year, the ecosystem acted as a carbon source. (2) Structural equation modeling revealed that the main influencing factors of NEE in the Larix gmelinii ecosystem are latent heat flux (LE), net radiation (Rn), leaf area index (LAI), air temperature (Ta), relative humidity (RH), vapor pressure deficit (VPD), and soil water content (SWC), with latent heat flux and net radiation being the most dominant factors affecting NEE variations. (3) Four machine learning methods (RF, XGBoost, SVM and ANN) accurately simulated the NEE of the Larix gmelinii ecosystem, with XGBoost and RF providing similar results. However, XGBoost outperformed RF in terms of simulation accuracy and computational efficiency. The study provides a basis for using machine learning methods to estimate ecosystem carbon fluxes.

    参考文献
    相似文献
    引证文献
引用本文

郭振敏,汲玉河,周广胜,周梦子,郑凯.基于机器学习的兴安落叶松生态系统在不同时间尺度的碳通量模拟及影响因素分析.生态学报,,(). http://dx. doi. org/10.5846/stxb202501130114

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数: