气候变化背景下黄土高原土壤侵蚀时空演变
DOI:
作者:
作者单位:

1.南京信息工程大学气象灾害预报预警与评估协同创新中心/生态与应用气象学院;2.中国气象局气象探测中心

作者简介:

通讯作者:

中图分类号:

基金项目:

省、部研究计划基金


The spatial-temporal evolution of soil erosion in the Loess Plateau under the context of climate change
Author:
Affiliation:

1.Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters/School of Ecology and Applied Meteorology, Nanjing University of Information Science &2.Technology

Fund Project:

Climate change project of China Meteorological Administration(QBZ202309)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 文章评论
    摘要:

    在气候变化背景下,模拟土壤侵蚀的时空演变特征并探讨其与气候因子之间的响应,对于应对气候变化和防灾减灾具有重要意义。现有研究主要聚焦于气候变化、坡度及植被恢复等因素对黄土高原土壤侵蚀的影响,但较少同时考虑各驱动因子之间的相互作用及其对土壤侵蚀的直接与间接影响。基于气象站点、土地利用/土地覆被和土壤质地等数据,采用Theil-Sen Median趋势和Mann-Kendal检验对气候因子的时空变化特征进行了分析,利用InVEST(Integrated Valuation of Ecosystem Services and Tradeoffs)模型模拟了1990年、2000年、2010年和2020年黄土高原土壤侵蚀的时空分布,并通过最优参数地理探测器和偏最小二乘结构方程模型在考虑自然因子和植被因子的基础上,重点对气候因子对土壤侵蚀的影响强度和路径进行分析。结果表明:气候因子时空变化具有阶段性和区域性,降水量在1990-2000年以?55.96 mm/10a的速率下降,而2000-2020年以55.99 mm/10a的速率上升;研究期内年降水量、降水强度指数、大雨日数、强降水量、平均气温和最低气温的增长率分别为26.15 mm/10a、0.26 mm?d?1·10a?1、0.56 d/10a、15.21 mm/10a、0.32 ℃/10a和0.40 ℃/10a。从空间上看,1990-2000年降水量减少区域为86.36 %,而2000年以后增加区域达97.42 %;2000-2020年,极端降水指标在整个研究区基本为增加;气温上升区域主要分布在东、西部,气候变化呈现明显的暖湿化趋势且降水的极端性增强。1990-2020年,黄土高原土壤侵蚀模数呈现先减少再增加趋势,2020年土壤侵蚀量为2.19亿t。最优参数地理探测器分析显示,坡度、降水和植被覆盖是土壤侵蚀的主要驱动因素,其中降水量对土壤侵蚀的解释力从1990年的0.11在2020年增至0.18。结合偏最小二乘结构方程模型分析结果,温度主要通过影响降水间接影响土壤侵蚀,降水和自然因子对土壤侵蚀有直接正贡献,而植被因子对土壤侵蚀有直接负贡献,但2020年比2010年降低0.02。因此,在气候暖湿化和降水极端化趋势下,其对土壤侵蚀的影响不可忽视,在未来的土壤侵蚀防控和可持续发展中,需将气候适应和区域发展相结合,以应对未来气候变化的挑战。

    Abstract:

    In the context of climate change, modeling the spatiotemporal evolution of soil erosion and examining its responsiveness to climatic factors were essential for addressing climate change and improving disaster prevention and mitigation efforts. Existing studies primarily focused on the impacts of climate variability, slope, and vegetation restoration on soil erosion in the Loess Plateau. However, few studies simultaneously considered the interactions among these driving factors and their direct and indirect impacts on soil erosion. This study used data from meteorological stations, land use/land cover, and soil texture to analyze the spatiotemporal characteristics of climatic factors using Theil-Sen Median trend analysis and Mann-Kendall tests. The InVEST (Integrated Valuation of Ecosystem Services and Tradeoffs) model was applied to simulate the spatial and temporal distribution of soil erosion in the Loess Plateau for the years 1990, 2000, 2010, and 2020. Additionally, the optimal parameters-based geographical detector model and the partial least squares structural equation modeling were used to assess the intensity and pathways through which climatic factors influence soil erosion, while considering natural and vegetation factors. The results showed that climatic factors exhibited both temporal and spatial heterogeneity: precipitation decreased at a rate of ?55.96 mm per decade from 1990 to 2000 but increased at a rate of 55.99 mm per decade from 2000 to 2020. During the study period, annual precipitation, precipitation intensity index, number of heavy rainfall days, extreme precipitation events, mean temperature, and minimum temperature increased at rates of 26.15 mm per decade, 0.26 mm per day per decade, 0.56 days per decade, 15.21 mm per decade, 0.32?°C per decade, and 0.40?°C per decade, respectively. Spatially, precipitation declined in 86.36% of the study area between 1990 and 2000, whereas it increased in 97.42% of the region between 2000 and 2020. From 2000 to 2020, extreme precipitation indicators generally rose across the entire study area. Temperature increases were most prominent in the eastern and western regions, reflecting a clear trend of warming and moistening, accompanied by intensified precipitation extremes. From 1990 to 2020, the soil erosion modulus in the Loess Plateau initially first declined and then increased, with soil erosion reaching 219 million tons in 2020. The optimal parameters-based geographical detector analysis revealed that slope, precipitation, and vegetation cover are the primary drivers of soil erosion, with the explanatory power of precipitation increasing from 0.11 in 1990 to 0.18 in 2020. The partial least squares structural equation modeling analysis further indicated that temperature primarily influenced soil erosion indirectly by affecting precipitation. Both precipitation and natural factors had direct positive contributions to soil erosion, whereas vegetation factors had a direct negative impact, although this effect decreased by 0.02 from 2010 to 2020. These findings highlight the significant impact of warming-wetting trends and the intensification of extreme precipitation events on soil erosion. Therefore, future soil erosion prevention and sustainable development efforts should integrate climate adaptation strategies with regional development plans to effectively address the challenges posed by ongoing climate change.

    参考文献
    相似文献
    引证文献
引用本文

李曼,何昊,吴东丽,余慧婕,赵琳,刘聪,李琪,胡正华.气候变化背景下黄土高原土壤侵蚀时空演变.生态学报,,(). http://dx. doi. org/[doi]

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数: