不同升温背景下北京市北部柏科花粉浓度的变化趋势
DOI:
作者:
作者单位:

1.中国科学院大学地球与行星科学学院;2.中国科学院大学生命科学学院;3.中国科学院大学地球与行星科学学院北京燕山地球关键带国家野外观测研究站

作者简介:

通讯作者:

中图分类号:

基金项目:

北京市自然科学基金(8212038);中央高校基本科研业务费专项(E1E40408)


The trends in Cupressaceae pollen concentration with various warming scenarios in northern Beijing, China
Author:
Affiliation:

1.College of Earth and Planetary Sciences, University of Chinese Academy of Sciences;2.College of Life Sciences, University of Chinese Academy of Sciences;3.Beijing Yanshan Earth Critical Zone National Research Station, University of Chinese Academy of Sciences, University of Chinese Academy of Sciences

Fund Project:

Beijing Municipal Natural Science Foundation(8212038);Fundamental Research Funds for the Central Universities(E1E40408)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 文章评论
    摘要:

    柏科花粉作为诱发某些过敏性疾病的常见过敏原,预测其在全球变暖背景下的浓度变化能为花粉症患者的科学预防和治疗提供重要帮助。本研究基于北京市北部连续四年(2018—2021年)的逐日柏科花粉浓度数据,结合气象因子、遥感指数及其它环境因子等多种特征变量构建随机森林模型,并预测不同升温幅度下柏科花粉浓度的变化趋势。结果表明,(1)随机森林模型对于柏科花粉浓度的模拟效果较好,真实值与预测值的R2(决策系数)为0.79,RMSE(均方根误差)为0.73。(2)柏科植物花粉的数量受温度的长期效应(积温)以及极端温度的影响较大,表现为在多种特征变量中,模拟当天花粉浓度前40、60、80 d高于10℃的积温(GDD_40_10、GDD_60_10、GDD_80_10)以及日最高温(Tmax)最为重要。(3)在日平均温度分别升高0.5℃、1.0℃、1.5℃、2.6℃情景下,受到植物生理机制以及环境适应能力的影响,北京市北部柏科花粉浓度呈现非线性变化,即表现为先增加后减少再增加的变化趋势。本研究探讨了不同特征变量对北京市北部柏科花粉浓度的影响,并通过建立随机森林模型对不同升温条件下柏科花粉浓度进行预测,强调了积温对于柏科花粉浓度的影响,并发现了未来变暖背景下柏科花粉非线性的变化趋势,这为花粉症患者进行预防、诊断、治疗提供科学指导并为优化城市绿地建设提供了重要参考。

    Abstract:

    Cupressaceae pollen is a significant allergen responsible for the onset of allergic diseases. Predicting changes in its concentration under global warming can provide essential insights for the scientific prevention and treatment of hay fever. This study focuses on daily Cupressaceae pollen concentration data from northern Beijing over four years (2018–2021) and synthesizes multi-source predictors comprising thermal indices (GDD), extreme temperature events, and vegetation phenology indicators, to develop a Random Forest model for predicting pollen concentration trends under different warming scenarios. The key findings are as follows: (1) The Random Forest model effectively predicts Cupressaceae pollen concentration, achieving an R2 of 0.79 and a root mean square error (RMSE) of 0.73, indicating a strong fit between observed and predicted values. (2) The pollen concentration of Cupressaceae plants is strongly influenced by long-term temperature effects, particularly growing degree days (GDD), and extreme temperature events. Among the various environmental factors, the most influential variables for predicting daily pollen concentration are thermal accumulation metrics (GDD>10°C.d) across 40-80 day windows (GDD_40_10, GDD_60_10, GDD_80_10), as well as the daily maximum temperature (Tmax). (3) Temperature rise scenarios of 0.5°C, 1.0°C, 1.5°C, and 2.6°C reveal a nonlinear response in Cupressaceae pollen concentration. Specifically, Cupressaceae concentration initially increases, then decreases, and increases again as the temperature rises. This nonlinear trend is likely influenced by the interplay between plant physiological mechanisms, adaptive responses to environmental changes, and temperature-induced shifts in flowering phenology. This study explores the impact of various environmental variables on Cupressaceae pollen concentration in northern Beijing using a Random Forest model to predict changes under different warming scenarios. It highlights the significant role of growing degree days (GDD) and identifies a nonlinear trend in pollen concentrations with future warming. These findings provide valuable insights for the prevention, diagnosis, and treatment of pollen-related allergies and offer crucial guidance for optimizing urban green space planning.

    参考文献
    相似文献
    引证文献
引用本文

吴双双,沈晓艺,孙爱芝,罗晰跃,杜君星.不同升温背景下北京市北部柏科花粉浓度的变化趋势.生态学报,,(). http://dx. doi. org/[doi]

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数: