基于机器学习算法的吉林省长白落叶松林最大净初级生产力影响因素分析
DOI:
作者:
作者单位:

1.北京林业大学林学院;2.中国林业科学研究院资源信息所

作者简介:

通讯作者:

中图分类号:

基金项目:

十四五重点研发项目课题(2022YFD2200501)


Analysis of influencing factors of the maximum of NPP (NPPmax) of Larix olgensis plantations in Jilin Province based on machine learning algorithm
Author:
Affiliation:

College of Forestry, Beijing Forestry University

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 文章评论
    摘要:

    净初级生产力(NPP)是评估森林生态系统质量的重要指标,其最大值(NPPmax)可以反映森林的生产潜力,研究植被NPPmax对合理利用森林资源和森林可持续经营具有重要意义。本文以吉林省长白落叶松(Larix olgensis A. Henry)林为对象,基于吉林省一类清查固定样地调查数据、2000~2022年的MOD17A3提取的NPPmax数据、环境因子数据(地形、气候和土壤因子),采用相关性分析、机器学习算法、Shapley加性解释(SHAP)等方法,分析NPPmax变化的驱动因子。4种机器学习算法中,随机森林模型(RF)对落叶松林NPPmax的预测精度最高,R2为0.540,对应的RMSE值为11.320 gC·m-2·a-1,其它模型依次为增强回归树(R2= 0.523)、人工神经网络(R2= 0.519)和支持向量机模型(R2= 0.501)。基于RF模型SHAP分析显示,影响落叶松林NPPmax变化的主导因素为18℃以上年积温、全氮和海拔。年积温、全氮含量和海拔对NPPmax存在阈值效应,当18℃以上年积温接近200℃、全氮含量达到2.0 g/kg以及海拔约为800 m时,NPPmax的增减变化明显。通过机器学习模型和SHAP分析处理NPPmax-环境因子复杂非线性关系,较好地解释了环境变量对NPPmax的影响机制。研究表明环境变量和NPPmax之间存在明显的阈值效应,为落叶松林立地质量评价提供了基础。

    Abstract:

    Net primary productivity (NPP) is a key indicator for assessing the quality of forest ecosystems, and its maximum value (NPPmax) reflects the potential for forest productivity. Studying vegetation NPPmax is crucial for the rational utilization of forest resources and sustainable forest management. This study focuses on Larix olgensis A. Henry plantations in Jilin Province as the research subject. Using the national forest inventory data of permanent plots in Jilin Province, NPPmax data extracted by MOD17A3 from 2000 to 2022, and environmental factors (terrain, climate, and soil), this study applied correlation analysis, machine learning algorithms, and Shapley additive explanation (SHAP) methods to analyze the driving factors of NPPmax change. Among the four machine learning algorithms, the random forest model (RF) predicted the NPPmax of L. olgensis plantations with the highest accuracy (R2 = 0.540, RMSE = 11.320 gC·m-2·a-1), followed by the boosted regression tree model (R2= 0.523), artificial neural network (R2= 0.519), and support vector machine model (R2= 0.501). The SHAP analysis based on the RF model revealed that the main factors affecting the change in NPPmax were the annual accumulated temperature above 18℃, total nitrogen, and elevation. The annual accumulated temperature, total nitrogen content and elevation had a threshold effect on NPPmax. The NPPmax significantly varied when the annual accumulated temperature above 18℃ approached 200℃, the soil total nitrogen content reached 2.0 g/kg, and the altitude was approximately 800 m above sea level. By using a machine learning model and SHAP analysis to address the complex nonlinear relationship between NPPmax and the environment, we can better explain the mechanism between NPPmax and environmental predictors. An obvious threshold effect exists between the environmental variables and NPPmax, which provides a basis for evaluating the site quality of L. olgensis plantations.

    参考文献
    相似文献
    引证文献
引用本文

高子滢,王海燕,何潇,雷相东,仇皓雷.基于机器学习算法的吉林省长白落叶松林最大净初级生产力影响因素分析.生态学报,,(). http://dx. doi. org/[doi]

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数: