长江上游水源涵养区生态系统服务价值多尺度空间分异——格局、过程与驱动力
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(42401358);教育部人文社会科学研究项目(24XJCZH007);中国科学院“西部之光”交叉团队项目(xbzgzdsys-202101);中国科学院战略性先导科技专项项目(XDB40000000)


Multi-scale spatial differentiation of ecosystem service values of the important water conservation area in the upper reaches of the Yangtze River: patterns, processes and driving forces
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 文章评论
    摘要:

    生态系统服务分级管理对探明生态系统服务价值(ecosystem service value,ESV)的多尺度空间分异特征及差异变化成因有着极大的诉求,对提升生态系统服务尺度变化过程理解具有重要意义。以长江上游重要水源涵养区-贵州马尾河流域为研究对象,通过构建500 m×500 m、1000 m×1000 m、1500 m×1500 m和2000 m×2000 m四种格网尺度单元,综合运用ESV当量系数法、敏感性分析、空间自相关分析、最优参数地理探测器和空间回归模型等技术手段,明晰不同格网尺度下流域ESV的空间分异特征及多元驱动因素对ESV的影响机制。结果表明:(1)在500-2000 m格网尺度中,流域ESV的空间分布特征兼具一致性与差异性,整体表现为西、东部较高,南、北部相对较低,沿水域形成一条ESV高值带,且ESV呈现出显著的正相关性和空间集聚性。随着格网尺度增大,流域ESV整体特征更为突出,但精细度有所降低,其空间相关性和聚集效应逐渐减弱。(2)流域ESV空间异质性受自然与社会经济因素双重影响,其中,人为影响指数在不同格网尺度下始终是影响流域ESV空间分异的主导因子,且与其他因子交互作用q值均超过50%,相较于单一因子效应,驱动因子间的交互作用对ESV空间分异的贡献更为突出。在500 m格网尺度中,人为影响指数与土地利用类型的交互作用表现出较为显著的解释力,达到78.7%,而在较大尺度中,其与高程的交互作用逐渐占据主导地位。(3)各驱动因素对ESV的影响具有尺度差异,较小尺度下模型的拟合效果最佳。在不同格网尺度下,人为影响指数对ESV均呈现显著的负向影响,部分驱动因素对ESV所呈现的显著性和作用方向具有一定的差异性。本研究旨在为调控各类驱动因素以制定马尾河流域生态系统多级管理决策,乃至推动长江上游水源涵养区生态系统精准治理和多层次人地耦合协调提供科学依据。

    Abstract:

    A significant investigation is needed into the multi-scale spatial differentiation characteristics of ecosystem service value (ESV) and the causes underlying these variations. This is crucial for enhancing our comprehension of the processes governing ecosystem service scale changes. In this study, the Mawei River basin in Guizhou, an important water conservation area in the upper reaches of the Yangtze River, is selected as the research object. We established four grid scale units, namely 500 m×500 m, 1000 m×1000 m, 1500 m×1500 m, and 2000 m×2000 m. We constructed four grid scale units: 500 m×500 m, 1000 m×1000 m, 1500 m×1500 m, and 2000 m×2000 m. A suite of analytical techniques was employed, including the ESV equivalent coefficient method, sensitivity analysis, spatial autocorrelation analysis, optimal parameter geographic detector, and spatial regression modeling. The ESV equivalent coefficient, sensitivity analysis, spatial autocorrelation analysis, optimal parameter geodetector, and spatial regression model were employed to elucidate the spatial differentiation characteristics of ESV in watersheds at varying grid scales and to ascertain the influence mechanism of multiple drivers on ESV. The findings demonstrate that: (1) At the 500-2000 m grid scale, the spatial distribution of ESV within the watershed exhibits both consistency and variation. The overall performance is higher in the west and east and lower in the south and north, forming a high ESV value belt along the watershed. Furthermore, ESV shows a significant positive correlation and spatial agglomeration. As the grid scale increases, the overall characteristics of ESV in the watershed become more prominent, although the fineness is reduced and its spatial correlation and aggregation effect gradually weaken. (2) The spatial heterogeneity of ESV in the watershed is influenced by both natural and socioeconomic factors. Among these, the anthropogenic influence index is consistently the dominant factor affecting the spatial differentiation of ESV in the watershed at different grid scales. Furthermore, the qvalue of interaction with other factors is more than 50%. In comparison to the effect of a single factor, the interaction between driving factors contributes to the spatial differentiation of ESV more prominently. At the 500 m grid scale, the interaction between the anthropogenic influence index and land use type demonstrated a markedly pronounced explanatory power of 78.7%. Conversely, at larger scales, its interaction with elevation exhibited a progressively dominant influence.(3) The influence of each driver on ESV exhibits scale-related differences, and the model demonstrates optimal fit at smaller scales. Across various grid scales, the anthropogenic influence index showed a significant negative effect on ESV. Additionally, the significance and direction of the effect of certain drivers on ESV exhibited some discrepancies. This study aims to furnish a scientific foundation for regulating various drivers to facilitate multi-level management decisions for the Mawei River basin ecosystem. Furthermore, it seeks to promote the precise management of the ecosystem in the upper reaches of the Yangtze River and the coordination of human-land coupling at multiple levels.

    参考文献
    相似文献
    引证文献
引用本文

李月,刘静兰,白晓永,冯霞,邱林.长江上游水源涵养区生态系统服务价值多尺度空间分异——格局、过程与驱动力.生态学报,2025,45(7):3062~3078

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数: