中国农田生态系统碳源汇时空动态特征与驱动影响机制
作者:
作者单位:

1.铜仁学院经济与管理学院;2.铜仁市乡村振兴研究院;3.山地空间智能监测与政策模拟工程中心;4.黔东农业(村)发展与生态治理实验室

作者简介:

通讯作者:

中图分类号:

基金项目:

贵州省基础研究计划(自然科学类)项目(黔科合基础-ZK[2023]一般464);铜仁市科技计划项目(铜市科研〔2022〕63号;铜市科研〔2023〕5号);贵州省高校哲学社会科学实验室“黔东农业(村)发展与生态治理实验室(试点建设)”(No.[2023]-07);铜仁学院硕士研究生创新基金(trxyyc-202301)


Spatiotemporal dynamic characteristics and driving impact mechanisms of carbon sources and sinks in the cropland ecosystem in China
Author:
Affiliation:

1.School of Economics and Management, Tongren University;2.Tongren Rural Revitalization Research Institute;3.Engineering Center of Intelligent Monitoring and Policy Simulation of Mountainous Territory Space;4.Qiandong Agricultural (Village) Development and Ecological Governance Laboratory

Fund Project:

Guizhou Provincial Science and Technology Project (No. ZK[2023]-464); Science and Technology Projects of Tongren City (No.2022-63, No.2023-5); Guizhou Provincial University Philosophy and Social Science Laboratory

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 文章评论
    摘要:

    农田生态系统是陆地生态系统的重要组成部分,其碳源汇过程对气候变化的响应非常敏感。然而,当前气候变化及其碳氮耦合作用对农田生态系统碳源汇过程的影响贡献与驱动机制尚不明晰。本文基于总初级生产力(GPP)、净初级生产力(NPP)和净生态系统生产力(NEP)三种碳汇指标,以及系统总呼吸(Rs)、自养呼吸(Ra)和异养呼吸(Rh)三种碳源指标构建6种情景,揭示了中国农田生态系统碳源汇时空演变趋势特征,并基于Lindeman-Merenda-Gold(LMG)模型定量评估了气候变化及其碳氮耦合作用对中国农田生态系统碳源汇变化影响贡献。研究结果表明:(1)2000—2020年中国农田生态系统碳汇与碳源均表现为波动增长趋势,其中GPP、NPP和NEP平均增长率分别为4.27、1.65与0.15 g C m?2 a?1,Rs、Ra和Rh平均增长率分别为4.12、2.62与1.50 g C m?2 a?1,由于较高的呼吸作用,中国农田生态系统总体表现为弱碳汇;(2)2000—2020年中国农田生态系统除Rs/GPP以0.12%的速率小幅增长外,NEP/NPP、NEP/GPP及NEP/Rs均呈减少趋势,变化速率分别为-0.28%、-0.39%和-0.46%,呼吸主导作用逐渐加强导致碳汇主导作用减弱;(3)CO?施肥和氮沉降对中国农田生态系统净碳汇增长的贡献为28.98%,主控了25.30%的农田碳汇区域。然而,CO?施肥和氮沉降也导致了中国农田生态系统碳源增强,相对贡献率为32.41%,主控了26.75%的农田碳源区域。(4)GPP弱主导机制驱动了中国农田生态系统NEP的增长,GPP是碳汇区(KNEP>0)碳汇增长的主要驱动因子,主控了77.14%的农田碳汇区域。相反,Rs强主导机制导致了中国农田生态系统NEP下降,Rh是碳源区(KNEP<0)碳源增强的主要驱动因子,主控了46.98%的农田碳源区域。研究结果可为巩固提升生态系统碳汇,促进碳中和目标实现提供科学依据。

    Abstract:

    The cropland ecosystem is an important component of terrestrial ecosystems, and its carbon source and sink processes are highly sensitive to climate change. However, the contributions and driving mechanisms of climate change and carbon-nitrogen coupling to cropland ecosystem carbon source and sink processes remain unclear. This study, based on Gross Primary Productivity (GPP), Net Primary Productivity (NPP), and Net Ecosystem Productivity (NEP) as carbon sink indicators, as well as Total Respiration (Rs), Autotrophic Respiration (Ra), and Heterotrophic Respiration (Rh) as carbon source indicators, designed six scenarios to reveal the spatiotemporal evolution characteristics of cropland ecosystem carbon sources and sinks in China. The Lindeman-Merenda-Gold model was used to quantitatively assess the contributions of climate change and carbon-nitrogen coupling to cropland ecosystem carbon source and sink changes. The results show that from 2000 to 2020, the cropland ecosystem carbon sinks and sources in China exhibited a fluctuating growth trend. The average growth rates of GPP, NPP, and NEP were 4.27, 1.65, and 0.15 g C m?2 a?1, respectively, while those of Respiration (Rs), Autotrophic Respiration (Ra), and Heterotrophic Respiration (Rh) were 4.12, 2.62, and 1.50 g C m?2 a?1, respectively. The cropland ecosystem was overall a weak carbon sink, primarily due to high respiration rates. During this period, except for a slight increase in Rs/GPP at a rate of 0.12% per year, the ratios NEP/NPP, NEP/GPP, and NEP/Rs showed declining trends, with rates of -0.28%, -0.39%, and -0.46%, respectively, indicating that the dominant role of respiration in carbon processes was strengthening, weakening the role of carbon sinks. CO? fertilization and nitrogen deposition contributed 28.98% to the increase in net carbon sinks in cropland ecosystems, primarily controlling 25.30% of the cropland carbon sink areas. However, these factors also enhanced carbon sources, with a relative contribution of 32.41%, primarily controlling 26.75% of the carbon source areas. A weak GPP dominant mechanism drove the increase in NEP, with GPP being the primary driver of carbon sink growth in 77.14% of cropland sink areas (KNEP > 0). Conversely, a strong Rs dominant mechanism led to the decline in NEP, with Rh being the main driver of carbon source enhancement, controlling 46.98% of carbon source areas (KNEP < 0). These findings provide theoretical guidance for consolidating and enhancing cropland ecosystem carbon sinks, thereby supporting the achievement of carbon neutrality goals.

    参考文献
    相似文献
    引证文献
引用本文

魏珩,吴路华,杨东妮,陈丹,熊露莎.中国农田生态系统碳源汇时空动态特征与驱动影响机制.生态学报,,(). http://dx. doi. org/10.5846/stxb202407151649

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数: