中国南亚热带森林土壤有机碳影响因素及分布特征
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

十四五国家重点研发计划(2023YFE0112805);国家自然科学基金(32271878)


Influencing factors and spatial distribution characteristics of soil organic carbon in subtropical forests of China
Author:
Affiliation:

Fund Project:

The National Key Technologies R&D Program of China,The National Natural Science Foundation of China (General Program, Key Program, Major Research Plan)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 文章评论
    摘要:

    中国南亚热带森林生态系统的土壤具有巨大的碳封存潜力,对于减缓气候变化做出了巨大的贡献,因此对南亚热带森林土壤有机碳空间分布格局的精准评估与管理对全球气候变化至关重要。为探讨森林土壤有机碳的空间分布及其影响因素,以2017年中国林业科学研究院热带林业实验中心的186个固定监测样地为研究对象,利用随机森林模型、随机森林加残差克里格模型和SHAP解释方法,结合实测植被数据、地形因子、遥感指数和气候变量等协变量,对土壤有机碳含量的空间分布进行了分析,并进一步确定了影响其变化的主要因素。研究结果表明:各因素对土壤有机碳含量的影响程度存在差异,并显示出一定的规律性。研究区土壤有机碳含量范围介于4.13-34.80g/kg之间,与气候、海拔、生物量等因子之间均呈现显著相关性(P < 0.05)。其中,地形和气候是影响土壤有机碳含量空间分布的主要因素,共同解释了预测结果的74.23%;而植被因素中的地上生物量、地下生物量和草本盖度也对土壤有机碳含量有显著影响,可解释预测结果的25.77%。同时,土壤有机碳含量随海拔、年平均降水量、生物量等因素的升高呈非线性增加趋势,随最暖月平均温度和最冷月平均温度之差、哈格里夫斯参考蒸发量、灌木Simpson指数等因素的增加而呈现出非线性减小趋势。两种方法预测的土壤有机碳含量空间分布的总体变化趋势基本一致,土壤有机碳含量在海拔较高、森林覆盖率较高和降水较多的地区呈现出较高的积累。与随机森林模型相比,随机森林加残差克里格模型在标准差、变异系数上更接近实际值,在考虑空间自相关性和环境相关性时具有更高的预测精度和可解释性。综上所述,本研究为理解林地土壤有机碳含量的空间分布及其影响因素提供了理论依据,对于制定增加土壤碳汇、减少碳排放的林地管理策略具有一定的参考作用。

    Abstract:

    The soil in China's subtropical forest ecosystems possesses a tremendous capacity carbon sequestration potential,making a substantial contribution to mitigating climate change. Consequently,precise assessment and management of the spatial distribution of forest soil organic carbon (SOC) are essential in combating global climate change. In this study,to explore the spatial distribution of SOC in subtropical forest land and its influencing factors,data were drawn from 186 permanent monitoring plots surveyed in 2017 at the Experimental Center of Tropical Forestry under the Chinese Academy of Forestry,which served as the primary research sites. Using a combination of the random forest model,the random forest with residual kriging model,and the SHapley Additive exPlanations (SHAP) interpretative method,the spatial distribution patterns of SOC content were analyzed. This analysis integrated measured vegetation data,terrain features,remote sensing indices,and climate variables as covariates,allowing identification of the primary factors influencing SOC variation. The results revealed that each factor impacted SOC content in distinct ways,with their modes of action and degrees of influence demonstrating certain regular patterns. The SOC content in the study area ranged from 4.13 to 34.80g/kg and showed significant correlations with climate variables,altitude,biomass,and other factors (P < 0.05). Notably,topography and climate variables were the main factors influencing the spatial distribution of SOC,collectively explaining 74.23% of the prediction results. Measured vegetation data,including aboveground biomass,belowground biomass,and herb cover,also had significant effects on SOC content,accounting for 25.77% of the explained variance. Simultaneously,SOC content exhibited a nonlinear increasing trend with the elevation,mean annual precipitation,and biomass,while showing a nonlinear decreasing trend with the temperature difference between mean warmest month temperature and mean coldest month temperature,hargreaves reference evaporation,and the Simpson index of shrubs. The overall spatial distribution trends of SOC predicted by the two methods were largely consistent,with higher SOC accumulation observed in areas with higher elevations,greater forest cover,and more precipitation. Compared to the random forest model,the random forest with residual kriging model showed better alignment with observed values in terms of standard deviation and coefficient of variation. This model offers higher predictive accuracy and interpretability by accounting for spatial autocorrelation and environmental correlations. In conclusion,this study provides a theoretical basis for understanding the spatial distribution of SOC content in forest land and its influencing factors. It offers valuable insights for formulating forest management strategies aimed at increasing soil carbon sequestration and reducing carbon emissions.

    参考文献
    相似文献
    引证文献
引用本文

郭晓雪,刘桂炳,张会儒,刘宪钊,曾冀.中国南亚热带森林土壤有机碳影响因素及分布特征.生态学报,2025,45(6):2669~2681

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数: