机器学习方法在黄土高原沟壑区模拟二氧化碳浓度的潜力评估
DOI:
作者:
作者单位:

1.西安理工大学水利水电学院,省部共建西北旱区生态水利国家重点实验室;2.水利部水利水电规划设计总院;3.西安理工大学

作者简介:

通讯作者:

中图分类号:

基金项目:

国家重点研发计划项目(2022YFF1302200),国家自然科学基金(项目编号52279025,42071335)


Evaluation of the potential of using machine learning to simulate the CO2 concentration in the gully region of the Chinese Loess Plateau
Author:
Affiliation:

1.State Key Laboratory of Eco-hydraulics in Northwest Arid Region,School of Water Resources and Hydropower,Xi’an University of Technology,Xi’an;2.General Institute of Water Resources and Hydropower Planning and Design,Ministry of Water Resources

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 文章评论
    摘要:

    二氧化碳(CO2)是主要的温室气体之一,空气中二氧化碳浓度的变化受到多种因素的影响。现在能连续观测地面空气二氧化碳浓度的站点依旧较少,但是常规气象数据容易观测,在给定地点如何用常规气象数据模拟地面空气二氧化碳浓度依旧缺乏研究。基于陕西省淳化县的和家山小流域的实测气象数据和二氧化碳浓度数据,分别采用不同位置的地面空气二氧化碳浓度或环境因子的组合驱动MLP、LSTM、Bi-LSTM和RF模型,评价了机器学习方法在黄土高原沟壑区典型站点模拟日尺度地面空气二氧化碳浓度的潜力。研究结果表明,无论是以同类型观测数据作为输入还是以环境因子的组合作为输入,4种机器学习模型都可以较好的模拟地面空气二氧化碳浓度的整体变化过程,且都可以用于插补数据。以其他点位实测二氧化碳浓度作为输入时,MLP模拟2号点的浓度C2精度最高,在测试集的误差仅为3.8%;以环境因子作为输入时,RF模拟2号点的浓度C2精度最高,在测试集的误差为6.3%。但是以环境因子作为输入时无法模拟出二氧化碳浓度剧烈的日变化过程。为了进行数据插补,以同类型的观测数据作为输入用于插补数据的效果更好,它可以较好地模拟出地面空气二氧化碳浓度的日变化过程。

    Abstract:

    Carbon dioxide (CO2) is one of the major greenhouse gases, and changes in CO2 concentration in the air is affected by many factors. At present, there are still few stations that can continuously observe ground air CO2 concentration, but conventional meteorological data are relatively easy to obtain. There is still a lack of research on how to use conventional meteorological data to simulate ground air CO2 concentration at a specific location. Based on the measured meteorological data and CO2 concentration data from the Hejiashan small watershed in Chunhua County, Shaanxi Province, the MLP, LSTM, Bi-LSTM and RF models were driven by ground air CO2 concentration or the combination of environmental factors at different locations, respectively. The potential of machine learning methods to simulate daily-scale air CO2 concentration on the ground of typical point in the gully region of the Loess Plateau was evaluated. The results show that the four machine learning methods can simulate the overall change process of ground air CO2 concentration, whether using the same type of observed data as input or combination of environmental factors as input, and can be used for data interpolating. When the measured CO2 concentration at other points is used as input, the simulation accuracy of the CO2 concentration at C2 by MLP is the highest, and the error in the test set is only 3.8 %. When the environmental factors are used as input, the simulation accuracy of the CO2 concentration at C2 by RF is the highest, and the error in the test set is 6.3 %. However, when environmental factors are used as input, it is impossible to simulate the dramatic daily variation of CO2 concentration. For data interpolation, it is better to use the same type of observed data as input, which can better simulate the daily process of ground air CO2 concentration.

    参考文献
    相似文献
    引证文献
引用本文

邓炜,刘登峰,李明亮,孟静静,黄强.机器学习方法在黄土高原沟壑区模拟二氧化碳浓度的潜力评估.生态学报,,(). http://dx. doi. org/[doi]

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数: