南京市景感生态学绿视率指标量化研究
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家重点研发计划项目(2022YFC3802903);国家自然科学基金项目(42401558)


Quantitative research on green view indicator of landsenses ecology in Nanjing City
Author:
Affiliation:

Fund Project:

National Key Research and Development Program of China (2022YFC3802903); National Natural Science Foundation of China (42401558)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 文章评论
    摘要:

    城市绿地是城市生态系统中的关键组成部分,不仅形成生态缓冲区来提升环境质量,还能保障居民的健康与福祉。随着城市区域的持续扩张,科学合理地规划绿地对推动可持续城市发展越来越重要。基于景感生态学的原理,提供了一种评估城市街区内绿化覆盖尺度的定量方法和景感绿视率指标(Landsense Green View,LGV)。这一指标用于捕捉影响环境和心理健康结果的绿化程度。研究聚焦于南京市的中心城区,使用包括人工智能和街景大数据在内的先进手段来精确量化LGV并评估其空间分布。此外,研究采用地理信息系统(Geographic Information System, GIS)来分析空间模式,并利用计量经济学工具来识别和辨析该地区LGV值的影响因素。回归模型的决定系数为0.869,所采用的模型在预测和理解城市中LGV具有可靠性。GIS分析揭示了几个关键结果:1)街区尺度的自然景观显著提升LGV,相反,人工景观则成为阻碍,显著降抑制LGV。2)城市街区内土地使用的功能和多样性对LGV值有显著影响。3)揭示了LGV在南京的分布表现出内外不均衡的现象,具体呈现从城市中心向农村地区递减的城乡梯度。这种梯度揭示了获取城市绿地的生态效益在不同区位存在显著差距,可能会影响城市规划和政策制定。通过理解城市LGV的空间影响因素和规律,城市规划者和环境管理者可以更好地制定绿化资源配置,并优化城市布局从而增强居民可获得的生态服务和社会福利。本研究加深了从以人为本的角度对现有生态绿地在当前状态和空间模式的理解,突出了在城市绿地规划中整合先进的定量工具和空间分析技术的重要性。提出的研究框架,可支持精细化的城市规划和绿色管理策略,旨在提高城市绿地的质量和功能性,有助于实现绿地配置的可持续性和城市韧性目标。

    Abstract:

    Urban green spaces are a key component of urban ecosystems, not only improving ecological buffers and maintaining environmental quality, but also ensuring the health and well-being of residents. As urban areas continue to expand, the scientific and rational planning of green spaces becomes increasingly vital for advancing sustainable urban development. The use of the Landsense Green View (LGV) indicator, derived from the principles of Landsenses Ecology, offers a valuable quantitative method for assessing the dimensionality of green cover within urban blocks. This metric is used to capture the level of greenery that affects environmental and psychological health outcomes. This study focuses on the central urban district of Nanjing, utilizing advanced methodologies including artificial intelligence and street view big data to meticulously quantify LGV and assess its distribution. Additionally, the study employs Geographic Information System (GIS) technology to analyze spatial patterns and utilizes econometric tools to identify and discern the factors influencing LGV values in this region. The regression model yields a high coefficient of determination of 0.869, which demonstrates the reliability of the employed model in predicting and understanding the Landsense Green View within the city. The GIS analysis conducted in the study unveils key insights: 1) Natural landscapes at the block scale prominently enhance LGV, conversely, artificial landscapes serve as impediments, decreasing LGV significantly. 2) The analysis shows that the function and diversity of land use within urban blocks have profound impacts on LGV values. 3) It reveals a concerning uneven distribution of LGV across Nanjing, characterized by an urban-rural gradient with LGV diminishing from the urban center towards rural areas. This gradient suggests a disparity in access to ecological benefits provided by urban green spaces which might influence urban planning and policy making. The implications of these findings are manifold. By understanding the spatial determinants and impacts of LGV, city planners and environmental managers can better strategize the allocation of green space resources and optimize urban layouts to amplify the ecological services and social benefits they confer to urban dwellers. In conclusion, this study fortifies the understanding of the current status and spatial patterns of ecological green spaces from a human-centered perspective. It highlights the importance of integrating advanced quantitative tools and spatial analysis techniques in urban green space planning. Furthermore, the research framework introduced in this study provides a robust foundation for optimizing urban planning and promoting sustainable green management approaches. By enhancing the quality and functionality of urban green spaces, our framework is geared towards achieving the objectives of sustainable development and urban resilience in the context of green space distribution.

    参考文献
    相似文献
    引证文献
引用本文

刘丹丹,张永霖,赵鸣.南京市景感生态学绿视率指标量化研究.生态学报,2024,44(23):10607~10618

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数: