基于面部特征的斑海豹(Phoca largha)个体识别研究
DOI:
作者:
作者单位:

1.自然资源部第一海洋研究所, 渤海海峡生态通道野外科学观测研究站;2.北京师范大学;3.自然资源部第一海洋研究所;4.川北医学院;5.青岛极地海洋世界有限公司;6.辽宁省海洋水产科学研究院;7.自然资源部北海发展研究院

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(32201433);青岛博士后应用研究项目(QDBSH202205);国家重点研发计划项目(2022YFF0802204);川北医学院校级科技发展基金青年项目(CBY20-QA-Y26)


Facial Feature-based Individual Identification of Spotted Seals (Phoca largha)
Author:
Affiliation:

1.Observation and Research Station of Bohai Strait Eco-Corridor, First Institute of Oceanography, Ministry of Natural Resources;2.North Sichuan Medical College

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 文章评论
    摘要:

    针对渤黄海斑海豹种群传统监测方法中高成本、低效率个体识别难题,本文提出一种基于面部特征的斑海豹个体识别模型。该模型基于卷积神经网络架构,结合注意力机制和多尺度特征处理技术,提高了对面部关键特征的识别能力,并通过深度可分离卷积降低了参数量和计算需求。实验结果显示,融合SlimC2F、CBAM和SPPF模块可显著提高网络识别性能,本文方法(SlimC2F-CBAM+SPPF)取得最佳识别效果。在自建有背景数据集与Caltech-256公共数据集上,模型识别准确率达98.35%、80.70%,优于目前主流模型。在迁移学习策略的应用下,模型对不同背景的适应性增强,识别准确率提升至98.70%。此外,即使在较小数据集上,模型仍能保持较高的识别准确率。最后,可视化分析展示了模型主要关注眼睛和鼻子等关键部位,进一步验证了模型的有效性和可解释性,为实现斑海豹个体的高效监测提供了新的技术手段。

    Abstract:

    In response to the high cost and low efficiency of traditional monitoring methods for the popu-lation of spotted seals in the Bohai and Yellow Seas, this paper proposes a facial feature-based individual recognition model for spotted seals. This model is based on a convolutional neural network architecture, which integrates attention mechanism and multi-scale feature processing technology to enhance the recognition ability of key facial features. It also utilizes depthwise separable convolution to reduce model parameters and computational requirements. The results showed that integrating SlimC2F, CBAM, and SPPF modules significantly enhances network recognition performance, with the proposed method (SlimC2F-CBAM+SPPF) achieving the best results. On the self-built dataset with backgrounds and the Caltech-256 public dataset, the model recognition accuracy reaches 98.35% and 80.70%, outperforming current mainstream methods. With the application of transfer learning strategies, the model's adaptability to different back-grounds has been enhanced, with an increase in identification accuracy to 98.70%. In addition, the model maintains high identification accuracy even on smaller datasets. Finally, visualization analysis demonstrated that the model primarily focused on capturing key areas such as eyes and nose for spotted seal facial recognition, further validating the effectiveness and interpretability of this method while providing new technical means for efficient monitoring of spotted seals.

    参考文献
    相似文献
    引证文献
引用本文

庄鸿飞,侯金,王守强,高宇,张朝晖,王宗灵,赵林林,何育欣,周庆杰,鹿志创,邢衍阔,杜光迅.基于面部特征的斑海豹(Phoca largha)个体识别研究.生态学报,,(). http://dx. doi. org/[doi]

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数: