黄土高原典型树种根系抗旱生理响应机制
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金重点项目(42130717)


Physiological response of root systems to drought resistance of typical tree species on the Loess Plateau
Author:
Affiliation:

Fund Project:

State Key Program of National Natural Science of China (42130717)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 文章评论
    摘要:

    全球气候变化引起极端干旱事件频发,导致黄土高原人工林生产力下降,死亡风险提高,但该区域典型树种应对极端干旱环境的生理特征变化能否提高树种抗旱性能还未可知。选取了该区域广泛分布的四个典型树种:刺槐(Robinia pseudoacacia)、丁香(Syringa reticulata)、辽东栎(Quercus liaotungensis)和油松(Pinus tabulaeformis)为对象,研究各树种根系在极端干旱过程中的水力特征、非结构性碳水化合物(NSC)含量和纹孔膜孔隙变化及其之间的相关关系。结果显示:(1)在干旱胁迫20 d后刺槐、丁香、辽东栎和油松根木质部导水率下降至0.08 kg m-1 s-1 Mpa-1、0.22 kg m-1 s-1 Mpa-1、0.09 kg m-1 s-1 Mpa-1和0.71 kg m-1 s-1 Mpa-1,栓塞程度达到97.2%、43.2%、63.1%和22.7%。(2)随着水力功能降低,刺槐、辽东栎和油松的根木质部NSC总量先增加后降低。刺槐和辽东栎根木质部内NSC总量在干旱胁迫30 d后分别比初始状态显著增加了57.9%和85.5%,但在干旱胁迫50 d后分别比初始状态增加了23.5%和47.4%。油松在干旱胁迫50 d时根木质部内NSC总量比初始状态显著增加了41.2%,在干旱胁迫70 d后比初始状态显著降低了8.2%。随着水力功能降低,丁香根木质部内NSC总量在干旱胁迫30 d和50 d时分别显著降低了20.2%和15.5%。(3)在极端干旱过程中各植物的纹孔膜由于所处的水分环境及渗透势的变化导致其孔隙先降低后增加。在干旱胁迫50 d后4个树种的纹孔膜孔隙收缩为初始状态的0.04-0.60倍,但在干旱胁迫70 d后纹孔膜孔隙增加为初始状态的0.42-1.38倍。这表明当极端干旱胁迫发生后,刺槐根木质部将首先面临水力失败的风险,丁香根木质部可能面临碳饥饿风险,而油松根能够存活最长时间。研究阐明了各植物根系对极端干旱胁迫的响应机制,为人工林的管理抚育提供科学依据。

    Abstract:

    The increasing frequency of extreme drought events due to global climate change has resulted in reduced productivity and heightened mortality risks in plantation forests on the Loess Plateau. However,it remains unclear whether adjustments in the physiological traits of typical tree species in response to extreme drought conditions can enhance their drought tolerance. This study selected four typical tree species-Robinia pseudoacacia,Syringa reticulata,Quercus liaotungensis,and Pinus tabulaeformis-widely distributed across the Loess Plateau to investigate how their root systems change during extreme drought conditions. We investigated the hydraulic characteristics,non-structural carbohydrate (NSC) content,variations in the pit membrane pore structure,and their interrelations throughout the drought process. The results showed that: (1) After 20 days of drought stress,the root xylem hydraulic conductivity of R. pseudoacacia,S. syringa,Q. liaotungensis,and P. tabulaeformis dropped to 0.08 kg m-1 s-1 MPa-1,0.22 kg m-1 s-1 MPa-1,0.09 kg m-1 s-1 MPa-1,and 0.71 kg m-1 s-1 MPa-1,respectively,while the embolism of each species roots were 97.2%,43.2%,63.1%,and 22.7%. (2) With decreasing hydraulic conductivity,the NSC content in the root xylem of R. pseudoacacia,Q. liaotungensis,and P. tabulaeformis initially increases and subsequently decreases. The content of NSC in the xylem of R. pseudoacacia and Q. liaotungensis roots significantly increased by 57.9% and 85.5% compared to the initial state after 30 days of drought stress,but increased by 23.5% and 47.4% compared to the initial state after 50 days of drought stress,respectively. The content of NSC in the root xylem of P. tabulaeformis increased significantly by 41.2% compared to the initial state after 50 days of drought stress,and decreased significantly by 8.2% compared to the initial state after 70 days of drought stress. As the hydraulic conductivity declined,the content of NSC in S. syringa root's xylem decreased by 20.2% and 15.5% after 30 and 50 days of drought stress,respectively. (3) Throughout the extreme drought process,the pore membrane porosity in various plants initially contracted and then expanded in response to alterations in their water microenvironment and osmotic potential. The pit membrane porosity of the four tree species contracted to 0.04-0.60 times the initial state after 50 days of drought stress,but increased to 0.42-1.38 times the initial state after 70 days. This study suggests that when extreme drought stress occurs,the xylem of R. pseudoacacia roots is first at risk of hydraulic failure,while the xylem of S. syringa roots may face the risk of carbon starvation,and P. tabulaeformis roots can survive the longest. The study clarifies the response mechanisms of plant roots to severe drought stress,providing a scientific foundation for the management and nurturing of artificial forests.

    参考文献
    相似文献
    引证文献
引用本文

徐肖阳,刘青,王云霞,刘莹,王国梁.黄土高原典型树种根系抗旱生理响应机制.生态学报,2025,45(7):3293~3301

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数: