中国双碳目标达成的区域差异预测及其影响因素研究
DOI:
作者:
作者单位:

1.湖南工商大学 财政金融学院 湖南 长沙;2.中南林业科技大学 经济学院 湖南 长沙

作者简介:

通讯作者:

中图分类号:

基金项目:


Prediction of regional differences in the achievement of China"s dual carbon goals and research on its influencing factors
Author:
Affiliation:

1.School of Finance and Finance, Hunan University of Industry and Commerce;2.School of Economics, Central South University and Technology

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 文章评论
    摘要:

    为明晰我国区域间双碳目标达成的进度和峰值的差异性特征,进而展开区域双碳目标压力测试,选用中国30个省域21年的数据,先从省域人均碳排放和人均RGDP两个指标维度对各省域的低碳经济发展现状展开聚类分析,接着利用半参回归方法验证人均碳排放峰值存在性,并运用FGLS实证方法检验基于EKC模型、IPAT模型以及ImPACT模型构建的实证模型稳健性,进而分别对常住人口、RGDP、碳强度和能源结构四个关键影响因素设置高低情景,运用上述实证模型对全样本、分组样本和省域样本进行峰值预测和比较分析。结果显示:①各分组样本的半参回归结果接近于“倒U型”,预示了人均碳排放峰值的客观存在性,为使用实证模型展开峰值分析提供了支持。②各组样本在不同实证模型下计算出来的峰值比较接近,但单个模型下各组峰值差异明显,说明不同类型省域出现峰值所对应的人均RGDP水平差别较大。③通过比较各组系数和峰值数据可知人口和经济增长对峰值的影响最为关键。④预测结果显示,30个省域呈现出两类分化特征,能源消费结构是导致区域达峰时间和峰值大小产生差异的关键因素。

    Abstract:

    To clarify the differences in progress and peak values of China's regional dual carbon targets, and to conduct regional dual carbon target pressure tests, this paper selects data from 30 provinces in China over the past 21 years. First, cluster analysis is conducted on the low-carbon economic development status of each province based on the two indicators of per capita carbon emissions and per capita RGDP. Then, semi parametric regression is used to verify the existence of peak per capita carbon emissions, and FGLS empirical method is used to test the robustness of empirical models based on the EKC model, IPAT model, and ImPACT model. Finally, high and low scenarios are established for the four key influencing factors of permanent population, RGDP, carbon intensity, and energy structure. The above empirical models are used to predict peak values for the entire sample, grouped samples, and provincial samples and to conduct comparative analyses. The results showed that: ① The semi parametric regression results of each group sample were close to an "inverted U-shape", indicating the objective existence of peak per capita carbon emissions and providing support for peak analysis using empirical models. ② The peak values calculated for each group of samples under different empirical models are relatively close, but there are significant differences in the peak values of each group under a single model, indicating that there are significant differences in the per capita RGDP levels corresponding to peak values in different types of provinces By comparing the coefficients and peak data of each group, it can be concluded that population and economic growth have the most critical impact on the peak The prediction results show that the 30 provinces exhibit two types of differentiation characteristics, and the energy consumption structure is the key factor leading to differences in regional peak times and peak sizes.

    参考文献
    相似文献
    引证文献
引用本文

谌 莹,石 柳.中国双碳目标达成的区域差异预测及其影响因素研究.生态学报,,(). http://dx. doi. org/[doi]

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数: