不同利用方式下温性草甸草原土壤碳氮磷化学计量比高光谱反演
DOI:
作者:
作者单位:

1.北京林业大学;2.中国环境科学研究院;3.国家环境保护呼伦贝尔森林草原交错区科学观测研究站

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(32201335)


Hyperspectral inversion of soil carbon, nitrogen, and phosphorus stoichiometry in temperate meadow steppes under different grassland utilization methods
Author:
Affiliation:

1.Beijing Forestry University;2.Chinese Research Academy of Environmental Sciences;3.State Environmental Protection Scientific Observation and Research Station for Hulunbeier Forest-Steppe Ecotone

Fund Project:

National Natural Science Foundation of China(32201335)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 文章评论
    摘要:

    土壤碳、氮、磷是支撑温性草甸草原土壤质量和植被生长的关键营养元素,通过高光谱数据对其进行估算对实现温性草甸草原土壤养分信息的快速和准确监测具有重要意义。本文以呼伦贝尔温性草甸草原三种不同利用方式(放牧、刈割和围封)的草地为研究对象,选取了18个样地,每个样地设3个样方重复,分别采集0~30 cm的土壤样品,测定土壤碳、氮、磷含量和土壤样品高光谱数据,通过BP神经网络(BPNN)、随机森林(RF)和偏最小二乘法(PLSR)建立高光谱反演土壤碳、氮、磷化学计量比模型,比较建模R2以及RMSR选择最优模型。结果表明:(1)RF模型对三种利用方式下全碳(TC)、全氮(TN)、总磷(TP)含量的光谱反演均有优秀表现(R2 ≥ 0.4433,RMSE ≤ 12.0604),BNPP模型表现次之,PLSR仅适用于放牧利用方式下TC、TN、TP含量的反演;(2)放牧利用方式下,三类模型对土壤碳氮比(C/N)、碳磷比(C/P)、氮磷比(N/P)光谱反演均有良好表现(R2 ≥ 0.4144,RMSE ≤ 65.4081);(3)刈割利用下,C/P的光谱反演中BNPP表现良好(R2 = 0.9916,RMSE = 7.0938),PLSR次之,C/N光谱反演中仅RF表现良好(R2 = 0.7749,RMSE = 0.3028);(4)围封利用下,三类模型对C/N、C/P的光谱反演均有良好表现(R2 ≥ 0.4462,RMSE ≤ 24.0289),而N/P的光谱反演中仅PLSR表现良好(R2 ≥ 0.7172,RMSE ≤ 0.8171)。总体而言,本研究认为RF模型在呼伦贝尔温性草甸草原区具有更强的普适性。研究结果以期为基于高光谱反演的不同利用方式下温性草甸草原表层土壤碳氮磷定量反演提供理论支撑与技术支持。

    Abstract:

    Soil carbon, nitrogen, and phosphorus are crucial nutrients supporting the soil quality and vegetation growth of temperate meadow steppes. Estimating these nutrients using hyperspectral data is significant for rapidly and accurately monitoring soil nutrient information in temperate meadow steppes. This study focused on grasslands with three different utilization patterns (grazing, mowing, and enclosure) in the Hulunbeir temperate meadow steppe. Eighteen sample plots were selected, with three replicates per plot, and soil samples from a depth of 0 to 30 cm were collected to measure soil carbon, nitrogen, and phosphorus contents as well as hyperspectral data. Models for inverting soil carbon, nitrogen, and phosphorus stoichiometric ratios using hyperspectral data were established through Back Propagation Neural Network (BPNN), Random Forest (RF), and Partial Least Squares Regression (PLSR). The optimal model was selected by comparing R2 and Root Mean Square of Residuals (RMSR). The results showed that: (1) The RF model performed excellently in spectral inversion of total carbon (TC), total nitrogen (TN), and total phosphorus (TP) contents under the three utilization patterns (R2 ≥ 0.4433, RMSE ≤ 12.0604), followed by the BPNN model. PLSR was only applicable to the inversion of TC, TN, and TP contents under grazing; (2) Under grazing, all three models performed well in spectral inversion of soil carbon-to-nitrogen (C/N), carbon-to-phosphorus (C/P), and nitrogen-to-phosphorus (N/P) ratios (R2 ≥ 0.4144, RMSE ≤ 65.4081); (3) Under mowing, BPNN performed well in C/P spectral inversion (R2 = 0.9916, RMSE = 7.0938), followed by PLSR. Only RF performed well in C/N spectral inversion (R2 = 0.7749, RMSE = 0.3028); (4) Under enclosure, all three models performed well in spectral inversion of C/N and C/P (R2 ≥ 0.4462, RMSE ≤ 24.0289), while only PLSR performed well in N/P spectral inversion (R2 ≥ 0.7172, RMSE ≤ 0.8171). Overall, this study suggests that the RF model has stronger applicability in the Hulunbeir temperate meadow steppe region. The findings aim to provide theoretical and technical support for quantitative inversion of surface soil carbon, nitrogen, and phosphorus in temperate meadow steppes with different utilization patterns based on hyperspectral inversion.

    参考文献
    相似文献
    引证文献
引用本文

袁淑雅,贺晶,刁兆岩,沃强,苏德荣.不同利用方式下温性草甸草原土壤碳氮磷化学计量比高光谱反演.生态学报,,(). http://dx. doi. org/[doi]

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数: