基于机器学习与再分析数据集的黄河水源涵养区蒸散发研究
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家重点研发计划(2021YFC3201102);第二次青藏高原综合科学考察研究(2019QZKK1003);国家自然科学基金(U2003105)


Evapotranspiration in the water source conservation area of the Yellow River Basin based on machine learning and reanalysis dataset
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    蒸散发是水循环的关键要素,分析其变化特征有助于理解区域水资源的时空分布格局。黄河水源涵养区是黄河流域重要的生态功能区,对该区域的蒸散发变化特征进行研究并归因分析,有助于缓解黄河流域的水资源供需矛盾。基于机器学习与ERA5-land再分析数据集,探究黄河水源涵养区2000-2022年蒸散发时空变化特征及影响因素,利用驱动要素去趋势方法分析不同影响因素的作用区域。结果表明:(1)黄河水源涵养区蒸散发多年平均值分布区间为256.49-841.45 mm,空间分布特征为自东向西递减,整体呈增加趋势;(2)黄河水源涵养区蒸散发的主要影响因素是地表净太阳辐射、总降水量、相对湿度,不同子流域内的主导影响因素不同,主导影响因素与区域内的水热条件及下垫面状况有关;(3) ERA5-land再分析数据集有着较好的模拟精度,可以作为大空间尺度和长时间区间研究的数据来源,但是由于下垫面的复杂性,仍需要在研究区内开展适应性评估。

    Abstract:

    Evapotranspiration is a key element of the water cycle, and analyzing its variations helps understand the spatiotemporal distribution patterns of regional water resources. The water source conservation area of the Yellow River Basin is an important ecological function area in the Yellow River Basin. Studying the characteristics of evapotranspiration changes in this area and conducting attribution analysis can help alleviate the water supply-demand contradictions in the Yellow River Basin. Based on machine learning and the ERA5-land reanalysis dataset, this study explored the spatiotemporal variations and influencing factors of evapotranspiration in the Yellow River water source conservation area from 2000 to 2022. The driving factor regression analysis method is used to analyze the influence of different factors in different regions. The results show that: (1) The multi-year average distribution range of evapotranspiration in the Yellow River water source conservation area is 256.49-841.45 mm, with a spatial distribution characteristic of decreasing from east to west and an overall increasing trend. (2) The main influencing factors of evapotranspiration in the Yellow River water source conservation area are surface net solar radiation, total precipitation, and relative humidity. The dominant influencing factors vary in different sub-basins and are related to the hydrothermal conditions and underlying surface conditions in the region. (3) The ERA5-land reanalysis dataset has good simulation accuracy and can serve as a data source for large spatial scale and long-time interval studies. However, due to the complexity of the underlying surface, adaptive assessment within the study area is still needed.

    参考文献
    相似文献
    引证文献
引用本文

张江蕾,陈少辉.基于机器学习与再分析数据集的黄河水源涵养区蒸散发研究.生态学报,2024,44(18):8314~8325

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数: