景观格局对生态系统服务的非线性影响和阈值调控——以福建省生态高效协同区为例
DOI:
作者:
作者单位:

1.东华理工大学测绘与空间信息工程学院;2.武汉大学资源与环境科学学院;3.东华理工大学

作者简介:

通讯作者:

中图分类号:

基金项目:

其他,省、部研究计划基金


Nonlinear effects of landscape pattern on ecosystem services and threshold regulation: a case study of eco-efficient synergistic zone in Fujian Province
Author:
Affiliation:

1.School of Surveying and Geoinformation Engineering,East China University of Technology,Nanchang;2.School of Resource and Environmental Science,Wuhan University,Wuhan

Fund Project:

省、部研究计划基金,其他

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    考虑生态系统服务间协同权衡关系,摸清协同化背景下景观格局特征与生态系统服务整体效益(TES)间的非线性关联机制,明确主控因子和最优驱动阈值,确保生态决策在顺应自然的前提下有效落实。研究方法:自组织特征映射神经网络模型、随机森林 (RF)+可视化表达算法。结果显示:(1)福建省生态高效协同区主要分布于高海拔地区,其内部TES整体呈现出西部高于东部的空间趋势。(2)耕、林和建设用地景观特征对TES的影响程度都呈现出面积>形状>空间布局的趋势。其中,耕、林景观面积的影响>斑块面积的影响,草、建设用地斑块面积的影响>景观面积的影响。(3)各景观格局因子对TES的影响存在最优驱动阈值区间和敏感调控区间,当建设用地面积占比超过10%后,其对TES的负面影响不再随建设用地扩张而显著增加。研究结论:各景观格局指数与TES间的关联过程是非线性的,其关联过程存在明显阶段性,不能用单一的线性模型拟合。在解决TES与景观特征因子间关联问题上,测试了机器学习模型和线性模型的拟合效果,其中随机森林模型表现最优异。本研究方法和思路的推广性及应用性强,可为其他地区和尺度的生态系统服务协同权衡关系研究提供参考。

    Abstract:

    Landscape patterns influence ecological processes. The purposes of this paper are to find out the nonlinear correlation mechanism between landscape pattern characteristics and total ecosystem service (TES) under the background of the coordination between ecosystem services, clarifying the dominant factors and optimal driving threshold, to ensure the effective implementation of ecological decision-making on the premise of complying with nature. The methods employed include the difference comparison method, self-organizing map (SOM), and random forest-partial dependence plots model, and compared the results of random forest (RF) model to that of the gradient boosting decision tree (GBDT) model and the ordinary least squares (OLS) model to verify the model’s reliability. The results show that: (i) the eco-efficient synergetic zones of Fujian rovince are mainly distributed in the high-altitude area, and the TES value within it shows the trend of west>east. (ii) The influence degree of landscape characteristics of the cultivated, woodland, and construction land on TES shows a trend of area > shape > spatial layout. Among them, the influence of the landscape area of cultivated and woodland is higher than that of their patch area, and the influence of the patch area of grassland and construction land is higher than that of their landscape area. (iii) The influence of landscape pattern factors on TES has an optimal driving threshold interval and a sensitive regulation interval. The optimal driving threshold ranges of landscape indices of cultivated land are percentage of Landscape (PLAND) < 40%, largest patch index (LPI) < 30%, 1.923.5. The optimal driving threshold ranges of landscape indices of woodland are PLAND > 52%, LPI > 40%, LSI>2.5, PD>5. The optimal driving threshold range of grassland LPI is < 19%. The optimal driving threshold range of construction land PLAND is <9%, and when the construction land area accounts for more than 10%, its negative impact on TES no longer increases significantly with the expansion of construction land. It is concluded that the correlation between TES and landscape characteristics factors is nonlinear, and the coupling process has obvious stages, which can not be fitted by a single linear regression equation. In the comparison of two machine learning models and a linear regression model, the RF model has the best fitting effect, and the machine learning models are all superior to the linear model. The methodologies and insights from the study are broadly applicable and can inform further research in various regions and scales.

    参考文献
    相似文献
    引证文献
引用本文

张紫怡,仝照民,张立亭,刘耀林.景观格局对生态系统服务的非线性影响和阈值调控——以福建省生态高效协同区为例.生态学报,,(). http://dx. doi. org/[doi]

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数: