基于多源数据的绿视率量化方法综述
DOI:
作者:
作者单位:

1.中国科学院生态环境研究中心,城市与区域生态国家重点实验室,北京;2.北京市生态环境监测中心;3.中国科学院生态环境研究中心,城市与区域生态国家重点实验室

作者简介:

通讯作者:

中图分类号:

基金项目:

国家杰出青年科学基金(42225104)


A review of methods for quantifying green visibility based on multi-source dataHua Yeyu1, 2, QIAN Yuguo1, 2, ZHOU Weiqi1,2,*
Author:
Affiliation:

Research Center for Eco-Environmental Sciences,Chinese Academy of Sciences

Fund Project:

The National Natural Science Foundation of China (General Program, Key Program, Major Research Plan),The National Science Fund for Distinguished Young Scholars

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    绿视率是刻画城市绿地空间分布特征的一个关键指标,且其与居民的视觉感知和实际感受紧密相连,因此可作为链接绿地生态系统服务与人类福祉的一个重要指标,是发展以人为本的高品质城市绿地的重要抓手。发展高效、准确量化绿视率的技术方法可为城市绿地科学研究、规划与管理提供重要支撑。遥感和地面观测技术的快速发展推动了城市植被研究由二维向三维方向拓展,但数据的可得性和易用性限制了绿视率研究的发展,开展科学的、可操作的绿视率量化工作仍需技术方法上的创新。本文在对绿视率测度方法综述的基础上,重点对最常用的两种方法——基于照片和基于模型构建量化绿视率进行了综述,并从公开数据获取性、空间覆盖度、数据真实度、操作难度和结果精确度五个方面综合分析与对比分析了两种方法的优缺点。本文提出,未来绿视率量化方法研究需要多学科深度交叉共同探索人与绿地环境交互机制,构建城市多尺度绿视率量化方案、关注多源数据耦合建模、控制模型训练与使用成本、构建方法评价体系等。本文认为,绿视率是典型的人与绿地环境的交互过程,地理信息科学应在吸纳计算视觉计算的基础上,将空间异质性、尺度、距离衰减等地理空间效应模式融入分析中,提升模型合理性和结果的可用性,以期从方法与应用两个方面推动绿视率研究的发展。

    Abstract:

    Green visibility is a key indicator to characterize the spatial distribution of urban green space, and it is closely related to the visual perception and actual experience of the residents, so it can be an important indicator to link the ecosystem services of green space with human well-being, and it is an important tool to develop human-centered high-quality urban green space. The rapid development of remote sensing and ground observation technology has promoted the study of urban greenness to expand from two-dimensional to three-dimensional, but the availability of data has limited the development of green visibility research. In this paper, we focus on the two most commonly used photo-based and 3D model-based constructions of quantitative green visibility. Then, we comprehensively compare the advantages and disadvantages of the two methods in terms of public data accessibility, spatial coverage, data authenticity, operational difficulty and accuracy of results. This paper proposes that future research should explore the interaction mechanism between people and green space environment, carry out multi-scale hierarchical analysis, pay attention to the coupled modeling of multi-source data, control the cost of model training and use, and construct a method evaluation system. In this paper, it is argued that green visibility is a typical interaction process between people and green space environment, and geographic information science should incorporate spatial heterogeneity, scale, distance attenuation, and other geospatial effect modes into the analysis based on incorporating computational visual computing, to improve the reasonableness of the model and the usability of the results, to promote the development of the research on green visibility both methodology and application.

    参考文献
    相似文献
    引证文献
引用本文

华野毓,钱雨果,赵文慧,王涵霖,李令军,王佳,周伟奇.基于多源数据的绿视率量化方法综述.生态学报,,(). http://dx. doi. org/[doi]

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数: