森林结构复杂度对单木分割精度的影响——以田横岛为例
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(42171292,42376228);外交部亚洲专项资金项目(WJ0923011);中国海洋发展基金会国际合作项目(B19029)


Effect of forest structure complexity on single wood segmentation accuracy: a case study of Tianheng Island
Author:
Affiliation:

Fund Project:

The National Natural Science Foundation of China (General Program, Key Program, Major Research Plan)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 文章评论
    摘要:

    单木分割对于森林资源调查具有重要的意义,不同结构复杂度的森林单木分割算法的选择以及分割参数的选取对分割精度有着很大的影响。以山东田横岛为研究区,基于无人机正射影像与激光雷达数据,首先提取海岛森林典型植被二维与三维特征,然后利用随机森林算法对不同树种的树木进行分类,最后基于分类后的点云数据,选取不同结构复杂度的森林样地,对比分析聚类算法、层堆叠算法、分水岭算法在不同复杂度林区的适用性。结果表明:(1)随机森林算法结合单木二维、三维特征可有效对混交林树木进行分类,模型总体的精度为94.51%,Kappa系数为0.9038;(2)聚类算法对结构简单的林区具有更高的分割精度(F=96.41),但依赖于分割参数的选取;面对复杂单木集群,分水岭算法总体得分波动最小(ΔF=14.56),表现出较强的稳定性;(3)混交林预先进行树种分类可有效改善单木分割环境,相比于直接进行单木分割,聚类算法、层堆叠算法、分水岭算法的分割精度均得到不同程度的提升(ΔF1=10.06,ΔF2=9.51,ΔF3=12.6)。

    Abstract:

    The individual tree segmentation is of great significance for forest resource surveys. The accuracy of segmentation is profoundly influenced by the choice of the forest single-wood segmentation algorithm and the parameters associated with different structural complexities. This research introduced drone orthophoto and laser radar data from Tianheng Island. Initially, 2D and 3D characteristics of typical forest vegetation were extracted. Subsequently, the random forest algorithm was applied to classify different tree species. With the classification of point cloud data, sampling plots with varying structural complexities were selected to conduct comparative analysis encompassing clustering algorithms, stacking algorithms, and the watershed algorithm, in order to enhance segmentation accuracy. The findings reveal that: (1) the random forest algorithm, combined with 2D and 3D features of a single wood, effectively classifies the mixed forest trees, achieving an impressive overall accuracy of 94.51% and a Kappa coefficient of 0.9038. (2) The clustering algorithm shows the highest segmentation accuracy for forest areas with simple structures (F=96.41), while depending upon the selection of segmentation parameters. In the case of complex single wood clusters, the watershed algorithm displays the least fluctuation (ΔF=14.56), indicating its superior stability. (3) Pre-classification of tree species in mixed forests effectively improves the single wood segmentation environment. Compared to direct single wood segmentation, the clustering, stacking, and watershed algorithms yield increased segmentation accuracy to varying degrees (ΔF1=10.06, ΔF2=9.51, ΔF3=12.6).

    参考文献
    相似文献
    引证文献
引用本文

马金超,郭振,许昊,宁焕杉,沈家伟,张志卫.森林结构复杂度对单木分割精度的影响——以田横岛为例.生态学报,2024,44(11):4770~4781

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数: