祁连山不同海拔青海云杉天然更新空间格局变化
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金区域创新发展联合基金项目(U21A20468);甘肃省自然科学基金项目(24JRRG034);甘肃省高校产业支撑计划项目(2023CYZC-45);张掖市市级科技计划项目(ZY2022KY03)


Changes in the spatial pattern of natural regeneration of Picea crassifolia at different elevations in the Qilian Mountains
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 文章评论
    摘要:

    青海云杉(Picea crassifolia)作为祁连山森林生态的建群种,在维系林区生物多样性、保持水土等方面起着非常重要的生态作用,探究其天然更新的空间格局时空动态特征对种群更新具有重要意义。在海拔2800 m、3000 m、3300 m的青海云杉林中设置固定样地,并于2017年、2022年记录样地所有胸径 < 50 mm的青海云杉胸径、冠幅和坐标等信息。通过Ripley's K函数、单变量标记点格局探究青海云杉胸径对空间分布特征的影响,再使用Moran's I统计量和统计量分析青海云杉胸径空间关联性特征,使用 LISA聚类方法识别每个青海云杉的胸径在空间中的相互作用关系。结果表明:(1)更新苗空间格局年际间变化整体呈现为聚集程度增加的趋势,2800 m样地聚集程度变化最大,3000 m与3300 m样地聚集程度变化较小,2017年2800 m和3000 m样地存在随着空间尺度的增加聚集分布和随机分布交替出现的现象,2022年这种现象基本消失。(2)基于胸径的单变量标记点格局能够敏锐地捕捉到胸径对空间格局的影响,但随着聚集程度的增加,这种影响逐渐消失。(3)2800 m、3300 m样地的胸径空间关联性年际变化呈现为空间正自相关加强的趋势,在2022年均表现出显著的空间正自相关,3000 m样地呈现为空间负自相关加强的趋势,在2022年表现出不显著的空间负自相关。(4)2800 m样地更新苗胸径集聚模式变化较大,高高集聚与低低集聚的数量显著增加,3000 m样地更新苗胸径集聚模式变化不大,基本无显著空间关联性的植株,3300 m样地更新苗胸径集聚模式变化较大,高高集聚的数量显著增加。考虑到聚集程度的增加带来的影响是复杂的,既包括消极的影响也包括积极的影响。建议在今后的经营管理中可以对呈现低低集聚的青海云杉幼苗进行适当剪除,减小种群的竞争压力从而提高幼苗存活率。

    Abstract:

    Picea crassifolia,as a constructive species of forest ecology in Qilian Mountains,plays a very important ecological role in maintaining forest biodiversity and soil and water conservation. It is of great significance to explore the temporal and spatial dynamic characteristics of its natural regeneration spatial pattern for population regeneration. Fixed plots were established in P. crassifolia forests at altitudes of 2800 m,3000 m,and 3300 m,recoring the diameter at breast height (DBH),crown width,and coordinates of all P. crassifolia trees with DBH<50mm were recorded in 2017 and 2022. The influence of DBH of P. crassifolia on spatial distribution characteristics was explored by K function and univariate marker point pattern. Moran's I statistics and statistics were used to analyze the spatial correlation characteristics of DBH of P. crassifolia. LISA clustering method was used to identify the spatial interaction relationship of DBH of each P. crassifolia. The results show that:(1) The interannual variation of the spatial pattern of new seedlings generally demonstrated an increasing trend in aggregation. The aggregation degree of 2800 m plot changed the most,while the aggregation degree of 3000 m and 3300 m plot changed little. In 2017,there was an alternate phenomenon of aggregation distribution and random distribution with the increase of spatial scale in 2800 m and 3000 m plot. By 2022,this phenomenon has largely disappeared. (2) The univariate marker pattern based on DBH could keenly capture the effect of DBH on spatial pattern,but this effect gradually disappeared with the increase of aggregation degree. (3) The interannual variation of the spatial correlation of DBH in the 2800 m and 3300 m plots showed a strengthening trend of positive spatial autocorrelation,showing a significant positive spatial autocorrelation in 2022,and the 3000 m plot showed a strengthening trend of negative spatial autocorrelation,showing an insignificant negative spatial autocorrelation in 2022.(4) The DBH agglomeration pattern among new seedlings at the 2800 m plot changed greatly,and the number of high-high and low-low agglomeration increased significantly. The DBH agglomeration pattern of the new seedlings in the 3000 m plot did not change much,and there were basically no plants with significant spatial correlation. To conclude,considering that the impact of the increase in the degree of aggregation is complex,including both negative and positive effects. It is suggested that the seedlings of P. crassifolia showing low-low agglomeration can be properly cut off in the future management,so as to reduce the competitive pressure and improve the survival rate of seedlings of P. crassifolia.

    参考文献
    相似文献
    引证文献
引用本文

刘济萌,刘贤德,马瑞,赵维俊,敬文茂,许尔文,杨逍虎.祁连山不同海拔青海云杉天然更新空间格局变化.生态学报,2025,45(5):2337~2345

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数: