大豆叶绿素分子光能吸收特性
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(31960054,32260063)


Investigation on the light energy absorption characteristics of chlorophyll molecules for soybean
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 文章评论
    摘要:

    明确叶绿素分子有效光能吸收截面对深入了解植物光合过程具有重要意义。为定量且全面探讨光合色素分子有效光能吸收截面对光强的响应,以大豆(Glycine max)为例,设置全日照和遮荫两种光强处理,首先测量CO2浓度分别为300、400、500 μmol/mol和600 μmol/mol时叶片电子传递速率对光强的响应曲线(J/I曲线);测量大豆叶片的叶绿素含量;然后结合光合机理模型计算本征光能吸收截面(σik)、有效光能吸收截面(σ'ik)和捕光色素分子处于激发态的最小平均寿命(τmin)等光合参数。结果表明,光合机理模型可很好地拟合两种光强条件下不同CO2浓度下大豆叶片的J/I曲线,其决定系数均大于0.99;不同CO2浓度下,遮荫和全日照下最大电子传递速率(Jmax)范围分别为126.03-164.34 μmol m-2 s-1和273.33-326.92 μmol m-2 s-1,τmin值范围分别为16.15—22.93 ms和3.65-4.64 ms。与全日照相比,遮荫条件下大豆叶片捕光色素分子的光能吸收能力明显较低,而处于最低激发态的叶绿素分子数则明显较大。相同光照处理下,不同CO2浓度对大豆叶片的σikτmin值无显著影响,而σ'ik值随着CO2浓度增加而整体呈减小趋势。以400 μmol/mol CO2浓度时的相关光合参数为例,结合电子传递速率计算公式,首次从叶绿素分子光能吸收特性角度定量解释了全日照条件下大豆叶片具较高Jmax的原因。这为定量研究叶绿素分子有效光能吸收截面提供了新的研究手段。

    Abstract:

    Understanding the effective light energy absorption cross-section of chlorophyll molecules is crucial for a deeper insight into the complexities of the plant photosynthetic process. This study investigates how the effective energy absorption cross-section of chlorophyll responds to varying light intensities, aiming to shed light on the underlying reasons for discrepancies in photosynthetic electron transfer rates among plants exposed to different light conditions. We used a portable photosynthesis fluorescence measurement system to capture the response curve of the electron transfer rate to light intensity (J/I curve) for soybean (Glycine max) leaves under both shaded and full sunlight conditions, with each condition tested across CO2 concentrations of 300, 400, 500 μmol/mol and 600 μmol/mol. Concurrently, we measured the chlorophyll content of the soybean leaves to provide a comprehensive dataset. Using a photosynthetic mechanistic model, we calculated key parameters: the intrinsic light absorption cross-section (σik), the effective light absorption cross-section (σ'ik), and the minimum average lifetime (τmin) of the excited state of the pigment molecules. The mechanistic model showed an excellent fit to the J/I curves of soybean leaves under the tested CO2 concentrations and light conditions, with a determination coefficient exceeding 0.99. The fitted results revealed significant differences in the maximum electron transport rate values (Jmax) between shaded and full sunlight conditions across all CO2 concentrations. Specifically, Jmax values ranged from 126.03 to 164.34 μmol m-2 s-1 under shade and 273.33 to 326.92 μmol m-2 s-1 under full sunlight. Similarly, τmin exhibited distinct ranges: 16.15 to 22.93 ms under shaded conditions and a notably lower range of 3.65 to 4.64 ms under full sunlight. In comparing the two light conditions, the photosynthetic pigment molecules in soybean leaves demonstrated a significantly lower light energy absorption capacity under shade, yet they possessed a higher number of chlorophyll molecules in the lowest excited state. Notably, the values of σik and τmin were not significantly affected by varying CO2 concentrations under the same light conditions. In contrast, the σ'ik value decreased as CO2 concentrations increased. By integrating the calculation formula of the electron transfer rate with relevant photosynthetic parameters at 400 μmol/mol CO2 concentration, our study quantitatively explains why soybean leaves exhibit a higher Jmax under full sunlight. This explanation is based on the light energy absorption characteristics of chlorophyll molecules, providing a novel perspective on the role of pigment molecules in photosynthesis. This research not only advances our understanding of photosynthetic efficiency under varying environmental conditions but also introduces a new methodological approach for quantitatively analyzing the effective energy absorption cross-section of chlorophyll molecules. These advancements are vital for optimizing agricultural practices and managing plant growth in response to changing light conditions and atmospheric CO2 levels.

    参考文献
    相似文献
    引证文献
引用本文

康华靖,李进省,王复标,彭春菊,牛正文,段世华,叶子飘.大豆叶绿素分子光能吸收特性.生态学报,2025,45(3):1454~1463

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数: