气候变化下中国主要生物燃油树种分布与变迁
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

北京林业大学大学生创新创业训练项目(X202110022020);国家林业和草原局委托项目(2020020011)


Distribution and change of major biofuel tree species in China under climate change
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 文章评论
    摘要:

    生物燃油树种是发展生物质能源,实现化石能源替代战略的重要物质基础,明确当前和未来气候变化下我国生物燃油树种适生区分布,对保护和利用生物燃油树种,促进林业生物能源产业发展,保障能源安全和实现"双碳"目标具有重要意义。基于我国10个主要生物燃油树种的1037条树种分布数据和20个环境变量,利用最大熵模型(MaxEnt)预测了各树种当前和未来气候情景下(2050年和2070年的RCP4.5情景)的潜在适生区,得到了影响各树种分布贡献率最大的环境因子,并对我国各区域主要种植树种进行了区划。结果表明:(1) MaxEent模型预测效果较好,各树种模拟结果AUC值均在0.9以上。(2)影响各种分布的贡献率较高的环境因子因树种而异,最暖季度降水量和温度季节性变化标准差的相对贡献率较高。(3)10个生物燃油树种极高适生区面积范围在43.38万km2-117.74万km2之间,可根据模拟结果将树种分布划分为北部、中东部、东南部和西南部4个亚区,北部亚区主要树种为文冠果(Xanthoceras sorbifolium)和欧李(Cerasus humilis),中东部亚区主要树种为盐肤木(Rhus chinensis)、山桐子(Idesia polycarpa)、无患子(Sapindus saponaria)、乌桕(Triadica sebifera)和黄连木(Pistacia chinensis),东南部亚区主要树种为光皮梾木(Cornus wilsoniana)和山鸡椒(Litsea cubeba),西南部亚区主要树种为小桐子(Jatropha curcas),各树种分布亚区与我国发布的林业生物质能发展规划一致性较高。(4)与当前相比,在未来2070年RCP4.5情景下,欧李和山鸡椒适生区面积表现出增加趋势,分别增加31.79万km2和5.61万km2,其他树种面积均减小,减小幅度范围在5.25万km2和38.63万km2之间;光皮梾木和山鸡椒的分布中心在未来向西北移动,盐肤木、乌桕和小桐子向东南移动,其他树种均向东北移动。

    Abstract:

    Biofuel tree species are the important material basis for developing biomass energy and realizing the strategy of fossil energy substitution. Clarifying the distribution of suitable tree species for biofuel in our country under current and future climate change plays an important role in protecting and utilizing tree species resources, promoting the development of the forestry bioenergy industry, ensuring energy security, and realizing the goal of "double carbon". Based on the distribution data of 1037 species of 10 major biofuel species and 20 environmental variables, the maximum entropy model (MaxEnt) was used to predict the distribution of potentially suitable areas of major biofuel species in China under current and future climate change scenarios (RCP4.5 scenario in 2050 and 2070). The environmental factors with the greatest impact on the distribution of tree species were obtained, and the major tree species planted in each region of China were zoned. The results showed that (1) the MaxEent model had a good prediction effect, and the area under the curve (AUC) values of the simulation results were above 0.9 for all tree species. (2) The environmental factors with high contribution to the distribution of each tree species differed from species to species. Precipitation of warmest quarter and temperature seasonality had relatively high contribution rates. (3) The highly suitable areas of the 10 biofuel species ranged from 433,800 km2 to 1,177,400 km2, and the distribution of tree species could be divided into four subzones:northern, central-eastern, southeastern, and southwestern based on the simulation results. The main tree species in the northern subzone were Xanthoceras sorbifolium and Cerasus humilis. The main tree species in the central-eastern subzone were Rhus chinensis, Idesia polycarpa, Sapindus saponari, Triadica sebifera, and Pistacia chinensis. The main tree species in the southeastern subzone were Cornus wilsoniana and Litsea cubeba. The main tree species in the southwestern subzone was Jatropha curcas. The distribution of each tree species was consistent with the forestry biomass energy development plan released by China. (4) Compared with the current situation, under the RCP4.5 scenario in 2070, the suitable area of Cerasus humilis and Litsea cubeba showed an increasing trend with 317,900 km2 and 56,100 km2 increase, respectively. While the area of other species decreased, ranging from 52,500 km2 to 386,300 km2. The distribution centers of Cornus wilsoniana and Litsea cubeba will move northwest in the future. The distribution centers of Rhus chinensis, Triadica sebifera, and Jatropha curcas will move southeast, while all other tree species will move northeast.

    参考文献
    相似文献
    引证文献
引用本文

唐梦,陈静,杨灵懿,贾翔,刘济铭,段劼.气候变化下中国主要生物燃油树种分布与变迁.生态学报,2023,43(24):10156~10170

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数: