基于土地利用模拟预测模型分析的城市绿色空间发展多情景模拟及建设时序研究——以湛江市中心城区为例
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(42171329)


Multi-scenario simulation of urban green space development and construction Timeline based on PLUS model analysis: A case study of the central Zhanjiang City
Author:
Affiliation:

Fund Project:

The National Natural Science Foundation of China (General Program, Key Program, Major Research Plan)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 文章评论
    摘要:

    城市绿色空间是未来中国城镇战略发展的重要生态空间载体。城市中心城区的绿色空间生态系统服务价值可作为未来城市生态空间规划的重要依据。生态服务系统之间的权衡或协同关系可通过不同土地利用方式和利用强度表征显现。通过对湛江市中心城区绿色空间应用土地利用模拟预测(PLUS)模型进行自然发展情景与国土空间规划情景双情景下2035年土地利用变化模拟,采用当量因子法及热点分析对生态系统服务价值及其高低值在空间上的聚集程度进行分析,与人类活动强度空间分布进行叠置,得出国土空间规划政策下湛江市中心城区城市绿色空间发展优先级分区,优先化解建设用地与绿色空间发展矛盾,为规划政策提供空间政策的量化数据基础,为其可行性实施、时序安排及预期结果提供数据支撑与建议。结果表明:(1)规划政策情景与自然发展情景未来土地利用模拟结果相比,耕地、林地增多,整体水域得到有效保护,建设用地蔓延受到抑制。(2)生态系统服务价值在2035年规划政策情景 > 2020年实际情景 > 2035年自然发展情景,分别约为12.22亿元、11.89亿元、10.53亿元,规划政策情境下生态系统服务价值总量较自然发展情景下提升约1.69亿元,生态环境效益得到显著提升,调节服务、支持服务、供给服务、文化服务分别提升约1.38、0.13、0.12、0.06亿元,但文化服务与2020年现状相比降低约0.31亿元,在未来建设过程中切勿忽视景观美学的营造。(3)通过生态系统服务及人类活动强度的空间分布分析对绿色空间发展进行优先级分区,建议以赤坎区中部、沿海域建设用地及水域范围、其他区域顺序进行分区建设。

    Abstract:

    Urban green space is an essentially ecological spatial vehicle for the long-term strategic development of the Chinese cities. It is expected that future urban ecologically spatial design will heavily rely on the ecosystem service value (ESV) of green space in core urban zones. Trade-offs or synergistic relationships among ecosystems can be characterized by different land use patterns and intensity of use. In this study, the PLUS model was applied to the green space in the center of Zhanjiang City to simulate the land use changes by 2035 under the two scenarios of the natural development and territorially spatial planning. The equivalent factor method and hotspot analysis were used to analyze the spatial aggregation of ESVs as well as their high and low values. The spatial distribution of human activity intensity in the study area was overlaid to establish the priority zoning of urban green space development in the central urban area of Zhanjiang City under territorial spatial planning policy, to prioritize the resolution of conflicts between construction land and green space development, to provide a quantitative data base for the planning policy, and to provide data support and suggestions for its feasibility implementation, timing arrangement and expected results. The analysis results showed that (1) compared with future land use simulation results of the natural development scenario, there could be an increase of arable land and forest land, the overall water area could be effectively protected, and the spread of construction land could be suppressed. (2) The value of ecosystem services in the 2035 planning policy scenario > 2020 actual scenario > 2035 natural development scenario is approximately $1.222 billion, $1.189 billion, and $1.053 billion, respectively. The total ecosystem service value under the planning policy scenario could be about $169 million higher than under the natural development scenario. As a result, there could be significant improvement in ecological and environmental benefits. Meanwhile, the regulation service, support service, supply service and cultural service could improve by about 138, 13, 12, 6 million yuan, respectively. However, cultural service could reduce by about 31 million yuan compared with the status quo in 2020. Thus the creation of landscape aesthetics must not be neglected in the future planning and construction initiatives. (3) By analyzing the spatial distribution of ecosystem services and the intensity of human activities, and then zoning the priority of green space development, it is recommended that the central area of Chikan District, the construction land along the sea and water areas, and other areas should be zoned.

    参考文献
    相似文献
    引证文献
引用本文

赵霁雨,崔柳,王佳,陈思.基于土地利用模拟预测模型分析的城市绿色空间发展多情景模拟及建设时序研究——以湛江市中心城区为例.生态学报,2023,43(15):6307~6320

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数: