Abstract:Rapid urbanization has been reshaping terrestrial ecosystems worldwide in last few decades, and this process has resulted in habitat fragmentation, deterioration and even habitat loss, which is considered to be one of key drivers of biodiversity reduction in global scale. In this context, building ecological networks to increase habitat connectivity in urban scale is vitally important for effective conservation. Because the data of other species is inaccessible, taking the observed bird population as focal species and to build ecological networks provides us a novel idea for protecting local biodiversity. This paper takes Beijing plain as study area to build a systematic ecological network. Based on the data of spatial distribution of typical 86 kinds of bird that are in the list of threatened species, we explore the potential habitats as source patches under the support of Maxent model. Then we utilize the land use data to create resistance surface which symbolizes the degree of difficulty of species' passing through among habitats, by means of that we integrate the spatial data with the minimum cumulative resistance model, and a classified ecological network is constructed. The result shows that wetlands and public gardens are the dominant habitats, which represent 81% natural areas in Beijing plain. The identified habitat sources are classified two types according to the linear relation of species richness and the extent of habitats, and the number of primary and the secondary habitats are 58 and 146, respectively. Similarly, the modelled ecological corridors are also classified into the primary and secondary types. The former represents the corridors among primary habitats, and the latter are corridors that connects the primary habitats with the secondary habitats. Totally, the number of corridors is 948 and the length is 3760 kilometers. Moreover, 12 essentially ecological nodes are selected by kernel density analysis, and 6 key corridors are confirmed according to their ecological attributes. These nodes and corridors are important ecological infrastructures in biodiversity conservation on Beijing plain. In conclusion, building up 948 corridors are believed to be beneficial for biodiversity conservation. Additionally, the ecological network is also an optional solution and reference for local decision makers to draw up scientifically and rationally a spatial optimized planning for human-nature harmonious Beijing.