大气CO2浓度及温度升高对高山灌木鬼箭锦鸡儿(Caragana jubata)生长及抗氧化系统的影响
作者:
基金项目:

中国科学院2013年"西部之光"人才培养项目;甘肃省科技计划项目(1508RJZA056);甘肃省科学院应用研究与开发计划项目(2017JK-07)


Effects of elevated CO2 and temperature on Caragana jubata (Alpine shrub) growth and antioxidant systems
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 文章评论
    摘要:

    以CO2浓度及温度升高为主要标志的全球气候变化将对我国西北地区脆弱的生态系统产生重要影响。利用环境控制实验研究CO2浓度倍增(eCO2,C1:400 μmol/mol和C2:800 μmol/mol)和温度升高(eT,T1:20℃/10℃和T2:23℃/13℃)对高山灌木鬼箭锦鸡儿(Caragana jubata)生长及抗氧化系统的影响。结果表明:eCO2和eT表现出相反的生长和生理效应,eT对幼苗生长的影响要大于eCO2对其的影响。eT使幼苗的总生物量、净光合速率(NAR)和相对生长速率(RGR)降低;但可促进地上部分生长,叶生物量比及叶面积比增加。eCO2可减缓或补偿由eT引起的总生物量、NAR和RGR的降低,并促进地下部分生长。对抗氧化系统来说,eT使得超氧化歧化酶(SOD)、过氧化物酶(POD)及抗坏血酸过氧化物酶(APX)活性降低,还原型谷胱甘肽(GSH)和抗坏血酸(ASA)含量降低;eCO2只增加常温下SOD酶活性,并使GSH、ASA整体水平提高。结论:温度升高和CO2浓度倍增没有协同促进鬼箭锦鸡儿幼苗的生长和光合能力。温度升高将对幼苗生长和抗氧化系统产生不利影响,eCO2可促进生长并可能通过抗氧剂含量增加来缓解氧化胁迫。因此,未来气候变化,尤其是温度升高将会对高寒区植物产生较大影响,CO2浓度增加可缓解增温的不利影响。

    Abstract:

    Global climate changes characterized by the elevation of CO2 concentration and temperature will have significant impacts on ecosystems in Northwest China. Warming and elevated atmospheric CO2 concentration effects have been extensively studied separately; however, their combined impact on plants is not well understood. In this study, we conduct experiments to understand the response of Caragana jubata(Alpine shrub) to the elevated CO2 (eCO2) and temperature (eT) using the controlled environmental test. Two different CO2 concentrations (C1:400 μmol/mol, C2:800 μmol/mol) were imposed at two different temperature regimes of 20℃/10℃ and 23℃/13℃ (day/night). The results showed that the effects of eT on the seedling were greater than that of eCO2. They showed the opposite effects. The total biomass of C. jubata was reduced by eT, and its net assimilation rate (NAR) with relative growth rate (RGR) were decreased too. The eT obviously promoted the above-ground growth, leaf mass ratio, and leaf area ratio. On the contrary, eCO2 slowed or compensated for the reduction in total biomass, NAR, and RGR. It promoted the growth of under-ground parts of seedling. The activities of superoxide dismutase (SOD), peroxidase (POD), and ascorbate peroxidase (APX) were decreased by eT. The antioxidant contents of GSH and ASA were decreased too. eCO2 increased the SOD activities grown under ambient temperature. It also promoted the overall levels of GSH and ASA. The adverse effects of eT on the antioxidant system of plants were partially mitigated due to eCO2. In general, the increased temperature and CO2 did not synergistically promote the growth and photosynthetic capacity of C. jubata seedling. The increase of temperature will greatly affect the growth and antioxidant system of C. jubata. The elevated CO2 can only partially alleviate these adverse effects by increasing antioxidant levels. Therefore, future climate change, especially the increase in temperature, will have a greater impact on alpine shrub. The elevated CO2 will alleviate the adverse effects of warming.

    参考文献
    [1] IPCC. Climate Change 2007:The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge:Cambridge University Press, 2007.
    [2] 杨金艳, 杨万勤, 王开运, 孙建平. 木本植物对CO2浓度和温度升高的相互作用的响应. 植物生态学报, 2003, 27(3):304-310.
    [3] Xu Z Z, Shimizu H, Yagasaki Y, Ito S, Zheng Y R, Zhou G S. Interactive effects of elevated CO2, drought, and warming on plants. Journal of Plant Growth Regulation, 2013, 32(4):692-707.
    [4] Geissler N, Hussin S, Koyro H W. Interactive effects of NaCl salinity and elevated atmospheric CO2 concentration on growth, photosynthesis, water relations and chemical composition of the potential cash crop halophyte Aster tripolium L. Environmental and Experimental Botany, 2009, 65(2/3):220-231.
    [5] Ward J K, Tissue D T, Thomas R B, Strain B R. Comparative responses of model C3 and C4 plants to drought in low and elevated CO2. Global Change Biology, 1999, 5(8):857-867.
    [6] Derner J D, Johnson H B, Kimball B A. Above- and below-ground responses of C3-C4 species mixtures to elevated CO2 and soil water availability. Global Change Biology, 2003, 9(3):452-460.
    [7] Inauen N, Körner C, Hiltbrunner E. No growth stimulation by CO2 enrichment in alpine glacier forefield plants. Global Change Biology, 2012, 18(3):985-999.
    [8] Sigurdsson B D, Medhurst J L, Wallin G, Eggertsson O, Linder S. Growth of mature boreal Norway spruce was not affected by elevated[CO2] and/or air temperature unless nutrient availability was improved. Tree Physiology, 2013, 33(11):1192-1205.
    [9] Beismann H, Schweingruber F, Speck T, Körner C. Mechanical properties of spruce and beech wood grown in elevated CO2. Trees, 2002, 16(8):511-518.
    [10] Bernacchi C J, Coleman J S, Bazzaz F A, McConnaughay K D M. Biomass allocation in old-field annual species grown in elevated CO2 environments:no evidence for optimal partitioning. Global Change Biology, 2000, 6(7):855-863.
    [11] Hall M, Medlyn B E, Abramowitz G, Franklin O, Räntfors M, Linder S, Wallin G. Which are the most important parameters for modelling carbon assimilation in boreal Norway spruce under elevated[CO2] and temperature conditions? Tree Physiology, 2013, 33(11):1156-1176.
    [12] Way D A, Oren R. Differential responses to changes in growth temperature between trees from different functional groups and biomes:a review and synthesis of data. Tree Physiology, 2010, 30(6):669-688.
    [13] Prieto P, Peñuelas J, Llusià J, Asensio D, Estiarte M. Effects of long-term experimental night-time warming and drought on photosynthesis, Fv/Fm and stomatal conductance in the dominant species of a Mediterranean shrubland. Acta Physiologiae Plant, 2009, 31(4):729-739.
    [14] Ainsworth E A, Rogers A. The response of photosynthesis and stomatal conductance to rising[CO2]:mechanisms and environmental interactions. Plant, Cell & Environment, 2007, 30(3):258-270.
    [15] Gutiérrez D, Gutiérrez E, Pérez P, Morcuende R, Verdejo A, Martinez-Carrasco R. Acclimation to future atmospheric CO2 levels increases photochemical efficiency and mitigates photochemistry inhibition by warm temperatures in wheat under field chambers. Physiologia Plantarum, 2009, 137(1):86-100.
    [16] Barton C V M, Duursma R A, Medlyn B E, Ellsworth D S, Eamus D, Tissue D T, Adams M A, Conroy J, Crous K Y, Liberloo M, Löw M, Linder S, McMurtrie R E. Effects of elevated atmospheric[CO2] on instantaneous transpiration efficiency at leaf and canopy scales in Eucalyptus saligna. Global Change Biology, 2012, 18(2):585-595.
    [17] Xu Z Z, Shimizu H, Ito S, Yagasaki Y, Zou C J, Zhou G S, Zhang Y R. Effects of elevated CO2, warming and precipitation change on plant growth, photosynthesis and peroxidation in dominant species from North China grassland. Planta, 2014, 239(2):421-435.
    [18] Salazar-Parra C, Aguirreolea J, Sánchez-Díaz M, Irigoyen J J, Morales F. Climate change (elevated CO2, elevated temperature and moderate drought) triggers the antioxidant enzymes' response of grapevine cv. Tempranillo, avoiding oxidative damage. Physiologia Plantarum, 2012, 144(2):99-110.
    [19] Farfan-Vignolo E R, Asard H. Effect of elevated CO2 and temperature on the oxidative stress response to drought in Lolium perenne L. and Medicago sativa L. Plant Physiology and Biochemistry, 2012, 59:55-62.
    [20] Qiu Q S, Huber J L, Booker F L, Jain V, Leakey A D B, Fiscus E L, Yau P M, Ort D R, Huber S C. Increased protein carbonylation in leaves of Arabidopsis and soybean in response to elevated[CO2]. Photosynthesis Research, 2008, 97(2):155-166.
    [21] Vurro E, Bruni R, Bianchi A, Di Toppi L S. Elevated atmospheric CO2 decreases oxidative stress and increases essential oil yield in leaves of Thymus vulgaris grown in a mini-FACE system. Environmental and Experimental Botany, 2009, 65(1):99-106.
    [22] 张明理. 青藏高原和喜马拉雅地区锦鸡儿属植物的地理分布. 植物分类学报, 1997, 35(2):136-147.
    [23] Hunt R. Basic Growth Analysis:Plant Growth Analysis for Beginners. Dordrecht:Springer, 1990.
    [24] Xiong F S, Mueller E C, Day T A. Photosynthetic and respiratory acclimation and growth response of Antarctic vascular plants to contrasting temperature regimes. American Journal of Botany, 2000, 87(5):700-710.
    [25] Grace S C, Logan B A. Acclimation of foliar antioxidant systems to growth irradiance in three broad-leaved evergreen species. Plant Physiology, 1996, 112(4):1631-1640.
    [26] Chance B, Maehly A C. Assay of catalases and peroxidases. Methods in Enzymology, 1955, 2:764-775.
    [27] Aebi H E. Catalase//Bergmeyer H U, ed. Methods of Enzymatic Analysis. Weinhem:Verlag Chemie, 1983:273-286.
    [28] Nakano Y, Asada K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology, 1981, 22(5):867-880.
    [29] Giannopolitis C N, Ries S K. Superoxide dismutases:I. Occurrence in higher plants. Plant Physiology, 1977, 59(2):309-314.
    [30] Miyake C, Asada K. Thylakoid-bound ascorbate peroxidase in spinach chloroplasts and photoreduction of its primary oxidation product monodehydroascorbate radicals in thylakoids. Plant and Cell Physiology, 1992, 33(5):541-553.
    [31] 陈建勋, 王晓峰. 植物生理学实验指导(第二版). 广州:华南理工大学出版社, 2006:75-77.
    [32] Albert K R, Ro-Poulsen H, Mikkelsen T N, Michelsen A, Van Der Linden L, Beier C. Effects of elevated CO2, warming and drought episodes on plant carbon uptake in a temperate heath ecosystem are controlled by soil water status. Plant, Cell & Environment, 2011, 34(7):1207-1222.
    [33] De Oliveira E D, Bramley H, Siddique K H M, Henty S, Berger J, Palta J A. Can elevated CO2 combined with high temperature ameliorate the effect of terminal drought in wheat? Functional Plant Biology, 2013, 40(2):160-171.
    [34] Xiao C W, Zhou G S, Ceulemans R. Effects of elevated temperature on growth and gas exchange in dominant plant species from Maowusu sandland, China. Photosynthetica, 2003, 41(4):565-569.
    [35] Prasad V P V, Boote K J, Allen L H Jr. Adverse high temperature effects on pollen viability, seed-set, seed yield and harvest index of grain-sorghum[Sorghum bicolor (L.) Moench\] are more severe at elevated carbon dioxide due to higher tissue temperatures. Agricultural and Forest Meteorology, 2006, 139(3/4):237-251.
    [36] 徐胜, 陈玮, 何兴元, 黄彦青, 高江艳, 赵诣, 李波. 高浓度CO2对树木生理生态的影响研究进展. 生态学报, 2015, 35(8):2452-2460.
    [37] 路娜, 胡维平, 邓建才, 陈效民. 大气CO2浓度升高对植物影响的研究进展. 土壤通报, 2011, 42(2):477-482.
    [38] Kang H M, Chen K, Bai J, Wang G. Antioxidative system's responses in the leaves of six Caragana species during drought stress and recovery. Acta Physiologiae Plantarum, 2012, 34(6):2145-2154.
    [39] Milcu A, Lukac M, Subke J A, Manning P, Heinemeyer A, Wildman D, Anderson R, Ineson P. Biotic carbon feedbacks in a materially closed soil-vegetation-atmosphere system. Nature Climate Change, 2012, 2(4):281-284.
    [40] 卢涛, 何兴元, 陈玮. O3和CO2浓度升高对油松针叶抗氧化系统的影响. 生态学杂志, 2009, 28(7):1316-1323.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

康红梅,李花花,徐当会,秦鹏,刘美玲.大气CO2浓度及温度升高对高山灌木鬼箭锦鸡儿(Caragana jubata)生长及抗氧化系统的影响.生态学报,2020,40(1):367~376

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数: