Abstract:Owing to strong protection measures, the threat to giant pandas was reduced from "endangered" to "vulnerable" by the IUCN in 2016. In recent years, national surveys of giant pandas revealed that the wild populations and habitat areas had increased constantly. However, habitat fragmentation and population isolation have become a more serious threat. Therefore, it is difficult to evaluate the current survival state of pandas accurately, although this is necessary for their protection. As a highly specialized animal utilizing the K-strategy, pandas are strongly dependent on their habitat ecosystems, and vulnerable to habitat fragmentation and population isolation. Therefore, the survival status of giant pandas should be evaluated from the perspective of the ecosystem. Based on the third and fourth national survey data, a multiple correlation analysis of population size with area of habitat and potential habitat was performed. We found a highly significant correlation between giant panda populations and habitats, implying that habitat conservation was the key to panda protection, and that there was a stable and close coupling relationship between wild populations and habitats. From the perspective of panda protection, this correlation constituted the basis for studying the ecosystem and designing ecosystem models. As a mature theory of systems science, the catastrophe theory provides a method of constructing system models with several key indices in the system, which can ignore the internal mechanism of the system. Considering the ecosystem of the distribution area of giant pandas as the research object, the number of wild pandas, and the area of the habitat and potential habitat as the key indices, the catastrophe theory was applied to this ecosystem. Moreover, the catastrophe potential function of the ecosystem was constructed, and the elliptic catastrophe model was derived. We found that, although the habitat area and number of wild populations continued to grow, the severe local population survival crisis and habitat fragmentation had generally weakened the systems' stability. The stability of the ecosystem is decreasing gradually and is very close to a critical state. Therefore, the ecosystem is still being subjected to great degradation pressures, and the survival crisis of giant pandas remains serious. Based on the current population and their habitat status, we suggested that all habitats needed to be protected effectively in the short-term. In addition, considering each large habitat as the center, corridors need to be constructed to connect the large population with surrounding small populations. In the long-term, more corridors need to be designed and constructed to expand the "star" network into a complex network, which will effectively withstand any disturbance. The catastrophe theory and its mathematical models were based on the entire system, and they included the relationships between the key elements, rather than solely on a few indices. This theory provided a coherent framework for modeling the complex dynamics of ecosystems. There are seven elementary catastrophes and corresponding models in the catastrophe theory, which have various potential applications. In addition to the evaluation of risk for biodiversity and the ecosystem, it has universal applicability in the study of ecology and as a methodology of system analysis.