森林生物量估算中模型不确定性分析
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家林业局林业公益性行业科研专项(20150430303);国家自然科学基金项目(30972360,41201563);浙江省林业碳汇与计量创新团队项目(2012R10030-01);浙江农林大学农林碳汇与生态环境修复研究中心预研基金


Model uncertainty in forest biomass estimation
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 文章评论
    摘要:

    单木生物量估算是区域森林生物量估算的基础。量化单木生物量模型中各种不确定性来源,分析各不确定性来源对森林生物量估算的影响,可为提高森林生物量估算精度提供理论依据。基于52株杉木地上部分生物量实测数据,建立杉木单木地上部分生物量一元与二元模型。在两种模型形式下,根据临安市2009年森林资源连续清查数据中杉木实测数据,分析单木生物量模型中所包含的2种不确定性,即模型参数不确定性和模型残差变异引起的不确定性。最后利用误差传播定律计算单木生物量模型总不确定性。结果表明,基于一元生物量模型的临安市杉木生物量估计均值为6.94 Mg/hm2,由一元模型残差变异引起的生物量不确定性约为11.1%,模型参数误差引起的生物量不确定性约为14.4%,一元生物量模型估算合成不确定性为18.18%。基于二元生物量模型的临安市杉木生物量估计均值为7.71 Mg/hm2,模型残差变异引起的不确定性约为7.0%,模型参数误差引起的不确定性约为8.53%,二元生物量模型估算合成不确定性为11.03%。研究表明模型参数不确定性随建模样本的增加逐渐降低,当建模样本由30增加到40再增加到52时,一元生物量模型模型参数不确定性分别为20.26%、16.19%、14.4%,二元生物量模型分别为13.09%、9.4%、8.53%。此外,建模样本的增加对残差变异不确定性也有一定影响,当建模样本由30增加到42再增加到48时,一元模型残差变异不确定性分别为15.2%,12.3%和11.7%;二元模型残差变异不确定性分别为13.3%,9.4%和8.3%。在2种不确定性来源中模型参数不确定性对估计结果影响最大,其次为模型残差变异。由于模型残差变异、参数不确定性与建模样本有关,因此可以通过增加建模样本来减小模型参数不确定性。二元生物量模型总的不确定性要低于一元生物量模型。

    Abstract:

    Forest inventory estimates of biomass for large areas are typically calculated by adding model predictions of biomass for individual trees. Quantifying the sources of uncertainty in the individual tree biomass model and analyzing the effects of various uncertainty on the forest biomass estimation can provide a theoretical basis for improving the accuracy of forest biomass estimation. In this study, based on the aboveground biomass data for 52 Cunninghamia lanceolate trees, continuous observation data from the permanent sample plots of Lin'an county, China, and a fitted above-ground tree biomass model of C. lanceolata, the error propagation law was used to quantify the uncertainty in model prediction, including the uncertainty of model residual variability and model parameter uncertainty. The result showed that the mean above-ground biomass of C. lanceolata calculated from the model based on diameter at breast height (DBH) (unary model) amounts to 6.94 Mg/hm2 and the uncertainty caused by model residual variability and model parameter uncertainty was approximately 11.1% and 14.4% of the total biomass, respectively. Furthermore, the total uncertainty was 18.18% of the estimation from the model based on DBH. With regard to the model based on DBH and tree height(H) (binary model), the mean above ground tree biomass of C. lanceolata was 7.71 Mg/hm2. The uncertainty caused by model residual variability and model parameter uncertainty was approximately 7.0% and 8.53% of the total biomass, respectively, and the total uncertainty was 11.03% of the estimation. The results also showed that the uncertainty of the model parameters decreases with the increase of sample size. For the sample size of 30, 40 and 52, the parameter uncertainty decreased from 20.26% to 16.19% and 14.4%, respectively for unary model. For the binary model, the parameter uncertainty decreased from 13.09% to 9.4% and 8.53%, respectively. In addition, the uncertainty of the residual variability decreased with an increase of the sample size. When the sample size was increased from 30 to 42 and 48, the residual variability uncertainty of the unary model decreased from 15.2% to 12.3% and 11.7%, respectively. As for the binary model, the residual variability uncertainty decreased from 13.3% to 9.4% and 8.3%, respectively. Among the two sources of uncertainty, the model parameter uncertainty has the greatest impact on the estimated results. The total uncertainty of the binary model was lower than that of the unary model. The model uncertainty is related to the modeling sample size, and therefore, can be reduced by increasing modeling samples.

    参考文献
    相似文献
    引证文献
引用本文

秦立厚,张茂震,钟世红,于晓辉.森林生物量估算中模型不确定性分析.生态学报,2017,37(23):7912~7919

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数: