Abstract:Measuring soil organic carbon (SOC), especially active organic carbon, can be used to quickly evaluate the recovery of soil fertility and quality. Therefore, we performed field and laboratory experiments to investigate the vertical distribution of total and active organic carbon in different layers (0-60 cm) of eroded red soil in three typical artificially restored forests, i.e., Pinus massoniana-broadleaved multiple layer forest (PB), Schima superba-Pinus massoniana mixed forest (SP), and broad-leaved mixed forest (BF). The SOC and organic carbon storage in different forests decreased with increasing soil depth and were ranked as follows:PB > SP > BF. The accumulation coefficients of surface SOC ranged from 0.49 to 0.55, which indicated that the surface soil had a high capacity to recover and maintain organic carbon. Soil readily oxidized organic carbon (ROC), dissolved organic carbon (DOC), and microbial biomass carbon (MBC) were calculated as 0.92-9.17 g/kg, 535.89-800.46 mg/kg, and 27.24-261.31 mg/kg, respectively, exhibiting reductions with the increasing soil depth. The content of active organic carbon was generally higher in the BF; and ROC constituted the largest proportion of active organic carbon (i.e., ROC/SOC), followed by DOC (i.e., DOC/SOC), whereas MBC accounted for the smallest proportion (i.e., MBC/SOC). As soil depth increased, ROC/SOC and DOC/SOC exhibited decreasing and increasing trends, respectively, whereas MBC/SOC (microorganism entropy) varied erratically. The allocation to ROC/SOC was higher in the BF than in the other two forest types, which suggested that broad-leaved mixed forest is prone to the accumulation of active organic carbon. Therefore, we could develop dense planting and stereoscopic planting techniques to use at early stages of forest restoration, in order to improve the carbon density and fertility of degraded red soil, and broad-leaved species could be planted into pioneer coniferous forests, such as those dominated by Pinus massoniana, in order to increase the active organic carbon content and, therefore, facilitate the recovery of available nutrients and soil function.