Abstract:Climate warming is known to increase the plant productivity of temperate forest ecosystems, but it is unclear whether this occurs in subtropical forests. Improved understanding of plant growth in subtropical forests is important when studying climate warming because considerable amounts of carbon are sequestered by these ecosystems. In this study, a heat cable was used to assess the effects of warming (+5℃) on the growth and biomass allocation of herbaceous and woody plants in a mid-subtropical forest. The results showed that warming increased the height of Miscanthus floridulus (herbaceous plant),Trema dielsiana(woody plant) and Mallotus lianus (woody plant), but deceased the height of Gahnia tristis (herbaceous plant). Aboveground biomass, belowground biomass and total biomass of woody plants increased in response to warming but there was reduced the aboveground biomass, belowground biomass and total biomass of herbaceous. The branches mass ratio (BMR) for woody plants increased, but the stem mass ratio (SMR) decreased in response to warming. However, the leaf mass ratio (LMR) and the root mass ratio (RMR) showed no direct response to warming, while there was a significant reduction in the proportion of fine-root biomass to total root biomass. The community as a whole was resistant to short-term warming and showed no significant changes the patterns of biomass allocation. However, the woody plant biomass allocation patterns between organs did change with warming. This suggests that woody plants could adapt to climate warming in the future by adjusting their biomass allocation pattern.