Abstract:Based on a soil warming experiment, this study aimed to study the effects of global warming on nutrient acquisition capabilities of subtropical Chinese fir (Cunninghamia lanceolata) seedlings and the associated plants, such as Helicteres angustifolia and Mallotus lianus. Three soil warming (WNW) and three non-warming (NW) 2m×2m Chinese fir seedling plots, both with no weeding, were established in Chenda State-Own Forest Farm, Sanming, Fujian. Soil warming was accomplished by buried heating cable technology, with soil temperature elevated to +5℃ above ambient. Fine root biomass was measured by soil coring, and ingrowth cores were used to extract root samples to measure root respiration, morphology and N concentration. Specific root respiration rates were measured by the Clark-type Oxygen Electrode and root tissue N concentration were determined by the vario EL Ⅲ Element analyzer. Root samples were scanned by the Epson scanner at 300dpi, and root architecture and morphology were analyzed by WinRHIZO Pro 2009b software. The results showed that:(1) Soil warming significantly decreased root (<1mm) biomass of Chinese fir, but significantly increased root (<1mm) biomass of the associated plants. N concentration was significantly increased, and specific root length (SRL) and specific root area (SRA) decreased significantly in the <1mm roots of the associated plants. Furthermore, the specific root respiration (SRR18, measured at reference temperature of 18) in the <1mm roots of the associated plants was decreased under warming, indicating acclimation of root respiration to warming. For Chinese fir seedlings, soil warming had no significant effect on SRR18 and root tissue N concentration, except that the SRA of the <1mm roots significantly increased. (2) Soil warming had significant influence on the relationship between SRR18 and SRL; however, tree species and interaction between warming and tree species had no significant effect, indicating that the balance between root absorbance capacity and maintenance cost was affected by soil warming both in roots of Chinese fir seedlings and their associated plants. In conclusion, the results showed that compared with Chinese fir seedlings, the associated plants had higher competitiveness in belowground nutrient acquisition and higher adaptability under soil warming, by increasing absorptive root biomass to rapidly forage soil nutrients. However, they were also able to employ an adaptive strategy of incurring root physiological and morphological adjustment to reduce per unit mass root maintenance costs. However, Chinese fir seedlings were inferior in root competitive capacity for nutrients and were less adaptable to global warming. Due to reduced root biomass, they had to increase SRL and SRA to meet their nutrient requirements for growth, with no acclimation of root respiration to soil warming. Thus, the maintenance cost per unit root mass increased simultaneously. These results would have meaningful implications for managing Chinese fir plantation under global warming.