Abstract:The rhizosphere is an important ecological region that is utilized to study the relationships among plant communities, soil, and microbial communities. In the plant rhizosphere area, particularly in the small region near the root of the plant, there are great differences in acid-base properties, redox potential, and microbial populations than in the general soil because of root secretions. Phytoremediation is a new technology that employs hyperaccumulator plants to remove pollutants from the environment or to render them harmless. Therefore, research focusing on the status and function of the rhizospheric environment in relation to soil contamination has become important in recent years. Moso bamboo is an economic bamboo species that occupies the largest area and is the most widespread species in China. Because of its strong environmental suitability, it is believed that Moso bamboo could be utilized to repair future environmental pollution. To establish the time during which the activity of the root system is optimum, the dynamic changes in soil heavy metal concentration, pH, and soil enzymes were analyzed in the present study. Soil samples were collected from the Moso bamboo forestry near a lead/zinc mine in Quzhou, Zhejiang province, from February 2014 to January 2015. We collected one rhizosphere soil sample and one non-rhizosphere sample during each sampling period. All of the soil samples were a mixture from several sites, with 24 samples in total. The results demonstrated that the pH of the rhizosphere and non-rhizosphere soil for Moso bamboo remained constant during the sampling period, with numbers ranging from 4.50 to 4.85. Water content in the rhizosphere soil was greater than that in the non-rhizosphere, and there was great variation between them, with minimum values measured in June and October. The available Cd and Zn contents of rhizosphere soil were significantly higher than those of non-rhizosphere soil, with the converse occurring for available Pb. The activities of catalase, phosphatase, urease, and dehydrogenase in rhizosphere soils were significantly higher than those in non-rhizosphere soils. There was no significant correlation between soil enzyme activities and absorbable heavy metal concentrations. In rhizosphere soil, only available Pb was significantly negatively correlated with catalase. However, there were highly significant correlations between available Cd and catalase, while the correlation between Cd and urease was negatively significant in non-rhizosphere soil. Our results showed synthetically that the quality of rhizosphere soil was better than that of the non-rhizosphere soil, which could provide some foundation for the application of Moso bamboo as a plant material for renovation.