Abstract:Hadoxylon and Reaummuria soongorica, two species of desert vegetation that occur near Juggar coal, were studied. Six kinds of heavy metals were detected in them, including Zn, Cu, Cr, Pb, As, and Hg. Conventional statistics and geostatistical analysis methods were used to determine the spatial distribution characteristics of heavy metals. The heavy metals in plants were assessed by the Nemerow integrated index to understand the current pollution status and potential ecological risk. The results suggested that maximum Hg (0.224 mg/kg), mean Hg (0.069 mg/kg) in stems and leaves, and mean Hg (0.215 mg/kg) in roots of Hadoxylon were all higher than the national baseline value in soil (0.065 mg/kg). Its maximum (0.92 mg/kg) and mean (0.066 mg/kg) in stems and leaves, and maximum (0.637 mg/kg) and mean (0.072 mg/kg) in roots of Reaummuria soongorica indicated similar results. In the whole body of Reaummuria soongorica, maximum Cr (72.62 mg/kg) and that of Zn (97.61 mg/kg) were higher than the soil baseline in Xinjiang (49.3 mg/kg) and nationally (61 mg/kg). Pb was not found. Interpolated precision was better for Hg and Cu, but worse for Zn. Spatial analysis of Reaummuria soongorica revealed that Zn, Cr, As, and Hg exhibited large artificial disturbances. Hg moderately contaminated Hadoxylon and mildly contaminated Reaummuria soongorica. Zn in stems and leaves of Reaummuria soongorica was a potential risk, whereas the others were in the safe range. It is worth mentioning that Hg was at a moderately hazardous level, higher than the other four elements. Over time, research into metal pollution in plants will be intensified.