Abstract:Nitrogen (N) deposition plays an important role in forest structure and function, but the redistribution pattern of N deposition and its components through the forest canopy is not well understood. In the study, we measured the concentrations of total N (TN), dissolved N (DN), and particulate N (PN) in rainfall outside of the stands, and from stemflow and throughfall during the growing seasons (May to October) of two consecutive years (2012-2013) in two temperate stands (i.e., Mongolia oak (Quercus mongolica) stand and mixed stand) in the Maroershan region, Northeast China. The objectives were to compare the redistribution patterns of the TN, DN, and PN depositions and their seasonal dynamics in the two stands, and explore potential driving factors of the variability in N deposition. The results showed that the mean TN depositions from outside of the stands, and inside of the oak stand and mixed stand were 8.49 kg hm-2 a-1, 15.97 kg hm-2 a-1, and 13.39 kg hm-2 a-1, respectively; among which DN and PN accounted for 76.35%, 82.79%, and 75.02%, and 26.35%, 17.21%, and 24.98% of the TN deposition, respectively. The TN deposition of throughfall accounted of 95.5% and 94.5% of TN inside the oak stand and mixed stand, respectively. The oak and mixed stand canopies leached TN deposition of 7.48 kg N·hm-2 a-1 and 4.90 kg N hm-2 a-1, respectively; and the former accumulated more DN but less PN than the latter. There was a significant seasonal pattern of N deposition for the two stands, in which the deposition fluxes were concentrated in the mid-growing seasons (June-August), and declined in the early- and late-growing seasons. The concentrations of TN and DN outside the stands, and in the throughfall and stemflow of the oak and mixed stands were all significantly related to the rainfall in a negative exponential function (P < 0.001). The days of continuous rain events influence the concentrations of TN and DN inside the two stands as enrichment within two days of continuous rainfall and dilution in the latter stages. This study indicated that the forest canopy significantly enriched the atmospheric N deposition, and the enrichment strength and its temporal dynamics varied with the characteristics of stands and rainfall. It was suggested that the enrichment effect of forest canopy should be taken into account in the simulation experiments of N deposition in the future.