Abstract:Food web is an import transfer path in aquatic ecosystem. It is essential to explore the environmental behavior of persistent organic pollutants (POPs) along the food web, which will provides cientific foundations for risk evaluation of ecological exposure. Here, we analyzed and summarized the environmental behavior of POPs in aquatic food web, including (a) relationships between trophic levels and food chain length and biomagnification; (b) POPs transfer along benthic and benthic-pelagic coupling food web; (c) adsorption and degradation of POPs by microbes; (d) influences of food web changes caused by several common environmental pressures on the environmental behavior of POPs. The results showed increased bioaccumulation in higher trophic levels, but exceptions were noted because of ecological and physiological factors, such as diet, prey abundance, POPs degradation and isotope enrichment by microbial loop, growth rate, and lipid content. Food chain length was positively correlated with bioaccumulation. When POPs were transferred from the sediment to top consumers, the coupling of pelagic-benthic food web would enhance the exposure risks of higher trophic level consumers to POPs. Controversies existed whether the biomagnification of POPs along benthic food web was greater than that along the pelagic food web. Microbes could adsorb POPs more efficiently because of having a larger surface area. Microbes in the sediment decomposed organic materials, recycling POPs into the water column. Microbial degradation is an important way for POPs leaving aquatic ecosystem. Food web changes caused by seasonal succession, eutrophication and exotic invasions could change the direction and efficiency of energy transfer, and further resulted in changes of the environmental behavior of POPs. Most current studies mainly focused on the environmental behavior of POPs in pelagic food web, especially on the higher trophic levels, lacking researches on the environmental behavior of POPs in benthic and pelagic-benthic coupling food webs and microbial loops. Furthermore, the studies on environmental behaviors of POPs were always restricted to parts of the food web on small temporal and spatial scales, lacking researches on dynamic changes of the environmental behavior of POPs from multiple perspectives and large scales. New POPs have been increasing in production and usage, but studies about its environmental behavior along food web were still scare. Future studies should be conducted considering the above.