Abstract:The invasion of alien plants poses serious threats to local ecosystems and biodiversity. To control plants invasion effectively, the relative importance of influencing factors and the areas with high invasion risk must be identified. In the present study, MAXENT was applied to simulate the potential distribution of Solidago canadensis and explore its response to major impact factors in east China including Anhui, Jiangsu, Zhejiang and Shanghai. This was based on occurrence records and environmental factors including land use change, human disturbance, soil characteristics, climate, and topography. ZONATION was combined with the results from MAXENT to identify priority areas with high invasion risks for monitoring. The results showed that (1) the five most important factors influencing the distribution of S. canadensis were the distance to major roads (29.4%), land use change (16.9%), precipitation seasonality (15.9%), population density (9.5%), and mean temperature of the driest quarter (6.2%), respectively; (2) the occurrence probability of S. canadensis decreased rapidly with increased distance from major roads. The occurrence probability was dramatically higher in areas where cropland was transformed to construction land, aquatic areas to grassland, construction land to woodland; mutual conversion between grassland and construction land occurred; and construction land remained unchanged. As precipitation seasonality increased, the probability initially decreased quickly and then slowly. With an increase of population density, the occurrence probability initially increased rapidly and then decreased very slowly. As the mean temperature of the driest quarter increased, the probability decreased initially and then increased gradually; (3) the area of invasion risk of S. canadensis was 130,433 km2. The primary risk area was mainly distributed in the Taihu basin, the area surrounding Hangzhou Bay, and the Zhejiang coast and its inland crop-and construction land. The secondary risk area was mainly distributed outside the primary risk area, particularly along the Yangtze River in southern Jiangsu. The third-level risk area was widely distributed in the south and east of Jiangsu, the middle and east of Anhui, and the north and east of Zhejiang.