星载大光斑LiDAR与HJ-1A高光谱数据联合估测区域森林地上生物量
作者:
作者单位:

东北林业大学,东北林业大学,中国科学院生态环境研究中心,东北林业大学工程技术学院,东北林业大学工程技术学院

作者简介:

通讯作者:

中图分类号:

基金项目:

中央高校基本科研业务费专项资金资助项目(2572014AB08);国家自然科学基金面上资助项目(41171274)


Estimation of regional forest aboveground biomass combining spaceborne large footprint LiDAR and HJ-1A Hyperspectral Images
Author:
Affiliation:

Northeast Forestry University,Northeast Forestry University,,,

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 文章评论
    摘要:

    以吉林省汪清林业局经营区为研究区,利用HJ-1A/HSI高光谱数据和ICESat-GLAS波形数据,估测区域森林地上生物量。从平滑后的GLAS 波形数据中提取波形长度W和地形坡度参数TS,建立GLAS森林最大树高估测模型;从GLAS波形数据中提取能量参数I(植被回波能量Ev和回波总能量E之比),建立GLAS森林郁闭度估测模型;利用GLAS估测的森林最大树高和森林郁闭度联合建立森林地上生物量模型。由于GLAS呈离散条带状分布,无法实现区域估测,因此研究将GLAS波形数据与HJ-1A/HSI高光谱数据联合,基于支持向量回归机算法实现森林地上生物量区域估测,得到研究区森林地上生物量分布图。研究结果显示,基于WTS建立的GLAS森林最大树高估测模型的adj.R2=0.78,RMSE=2.51m,模型验证的adj.R2=0.85,RMSE=1.67m。地形坡度参数TS能够有效的降低地形坡度的影响;当林下植被高度为2m时,得到的基于参数I建立的GLAS森林郁闭度估测模型效果最好,模型的adj.R2=0.64,RMSE=0.13,模型验证的adj.R2=0.65,RMSE=0.12。利用森林最大树高和森林郁闭度建立的森林地上生物量模型的adj.R2=0.62,RMSE=10.88 t/hm2,模型验证的adj.R2=0.60,RMSE=11.52 t/hm2。基于支持向量回归机算法,利用HJ-1A/HSI和GLAS数据建立的森林地上生物量SVR模型,生成了森林地上生物量分布图,利用野外数据对得到的分布图进行验证,验证结果显示森林地上生物量估测值与实测值存在很强的线性关系(adj.R2=0.62,RMSE=11.11 t/hm2),能够满足林业应用的需要。因此联合ICESat-GLAS波形数据与HJ-1A高光谱数据,能够提高区域森林地上生物量的估测精度。

    Abstract:

    HJ-1A/HSI Hyperspectral images and ICESat-GLAS waveform were used to estimate regional forest aboveground biomass (AGB) in the Wangqing forestry area of Jilin Province, China. Waveform parameters (e.g., waveform length W and the terrain slope parameter TS) extracted from GLAS waveform, were used to build the maximum forest height model. In addition, the energy parameter I (the ratio of vegetation energy and total energy) extracted from GLAS waveform was used to build the forest canopy density model. The final forest AGB model was built using both the maximum forest height and forest canopy density models. However, since GLAS footprints are geographically discrete, the AGB model was unable to produce the full regional coverage of forest AGB. To overcome the discontinuity limitations, HJ-1A/HSI Hyperspectral images were combined with GLAS waveforms to predict the regional forest AGB based on the support vector regression (SVR) method, to fully map the distribution of forest AGB. Results showed that the adj.R2 and RMSE of the maximum forest height model were 0.78 and 2.51 m, respectively, with adj.R2 of 0.85 and RMSE of 1.67 m as validation results. In the model, TS effectively reduced the impact of terrain slope. When the below vegetation height was set at 2 m, the forest canopy density model with I as dependent variable produced the best fit, with adj.R2 and RMSE of 0.64 and 0.13, respectively, and adj.R2 of 0.65 and RMSE of 0.12 as validation results. Overall, the adj.R2and RMSE of the forest AGB model were 0.62 and 10.88 t/hm2, respectively, with validation results of adj.R2=0.60 and RMSE=11.52 t/hm2. Estimated AGB had a strong linear relationship with field inventory AGB (adj.R2=0.62, RMSE=11.11 t/hm2). This study demonstrates that combining GLAS waveform and HJ-1A/HSI hyperspectral images has significant potential to map the full coverage regional forest AGB distribution with a high degree of accuracy.

    参考文献
    相似文献
    引证文献
引用本文

邱赛,邢艳秋,徐卫华,丁建华,田静.星载大光斑LiDAR与HJ-1A高光谱数据联合估测区域森林地上生物量.生态学报,2016,36(22):7401~7411

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数: