三江平原沼泽湿地垦殖及自然恢复对土壤细菌群落多样性的影响
作者:
作者单位:

黑龙江省农垦科学院,东北林业大学,东北林业大学,东北林业大学,呼伦贝尔市林业局

作者简介:

通讯作者:

中图分类号:

基金项目:

黑龙江省青年科学基金项目(QC2014C029);国家水体污染控制与治理科技重大专项课题(2015ZX07201-008-03)


Effect of cultivation and natural restoration on soil bacterial community diversity in marshland in the Sanjiang Plain
Author:
Affiliation:

Heilongjiang Academy of Land Reclamation Sciences,Northeast Forestry University,Northeast Forestry University,Northeast Forestry University,Hulunbeier forestry administration

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 文章评论
    摘要:

    为量化垦殖对我国东北沼泽湿地的影响程度,于2015年6月基于Illumina Miseq PE300第二代高通量测序平台,对黑龙江省洪河国家级自然保护区的原始沼泽、耕地、退耕湿地的土壤细菌16S rRNA基因高变区域进行测序,并分析沼泽湿地土壤细菌群落多样性和结构组成与垦殖的关系。结果表明:共获得358737条修剪序列且被划分为36个已知的菌门,在11个主要的土壤细菌门类中(相对丰度 > 1%),芽单胞菌门(P < 0.01)、拟杆菌门(P < 0.01)、厚壁菌门(P < 0.01)和绿菌门(P < 0.01)在不同生境类型样地差异显著,土壤细菌群落alpha多样性由高到低排序依次是:耕地、退耕湿地、原始沼泽。结合相关性分析和冗余分析可以证明,长期的耕作,特别是旱田耕作对沼泽湿地土壤细菌群落组成产生显著的影响,土壤pH、含水量、全碳、有机碳、可溶有机碳、碱解氮、微生物量碳、微生物量氮对土壤细菌的多样性和群落组成产生影响。总之,研究结果发现自然恢复可以显著促进土壤细菌群落多样性的恢复,但是沼泽湿地土壤细菌群落结构一旦被垦殖干扰改变将很难恢复到原始状态,强调了有效地利用土壤细菌群落对维护土壤生态系统平衡具有重要的意义。

    Abstract:

    Different perturbation regimes, including disturbance caused by cultivation or the process of natural restoration, can have significant effects on the soil bacterial community in marshland. In this study, we investigated the relationship between soil bacterial community composition and perturbation in marshland to quantify the extent of such disturbance-related changes in northeast China. We assessed the diversity of bacterial communities in twelve samples of marsh soil collected from pristine marsh, neighboring cropland, and a wetland restoration area. High-throughput sequencing of a bacteria-specific genomic sequence, the internal transcribed spacer (16S rRNA) region, was used to identify bacterial taxa. We obtained 358,737 sequences that represented 2263 bacterial OTUs across the three types of sampling sites. Of these, 1411 OTUs occurred at all three site types, 99 were shared between cultivated land and pristine marshland, 322 were shared between cultivated land and wetland converted from cropland, and 126 were shared between pristine marshland and wetland converted from cropland. All sites also hosted unique fungal OTUs, with 218 OTUs exclusive to cultivated land, 52 exclusive to pristine marshland, and 35 exclusive to wetland converted from cropland. Sequences were affiliated to 36 different phyla throughout the dataset. Sequence abundance showed that members of the Proteobacteria were more frequently identified in all soil samples than Acidobacteria, and included members of Chloroflexi, Actinobacteria, Bacteroidetes, Firmicutes, Gemmatimonadetes, Verrucomicrobia, Nitrospirae, Saccharibacteria, and Chlorobi, which represented an overwhelming proportion of the soil bacterial communities with an average relative abundance of > 1%, and another 25 phyla with an average relative abundance were <1%. The dominant phyla that showed the greatest variation among habitat types (> 1% of the average relative abundance) were Gemmatimonadetes (P < 0.01), Bacteroidetes (P < 0.01), Firmicutes (P < 0.01), and Chlorobi (P < 0.01). The soil bacterial community diversity decreased from a maximum in cultivated land, through the wetland restoration area, to a minimum in pristine marshland. Redundancy and correlation analyses demonstrated that chronic disturbance through cultivation, especially dry cultivation, significantly altered the bacterial community composition of marsh soil. The α-diversity of the soil bacterial community was most affected by soil moisture, soil pH, total carbon, soil organic carbon, soil dissolved organic carbon, available nitrogen, microbial biomass of carbon, and microbial biomass of nitrogen. Meanwhile, the soil bacterial community composition was significantly affected by soil moisture, soil pH, total carbon, soil organic carbon, and soil dissolved organic carbon. Overall, the results from our study showed that the state of soil carbon and nitrogen is affected by the disturbance by agricultural cultivation, causing long-term accumulated soil nutrients to become available as an energy source that can be rapidly mineralized by soil bacteria. In addition, our results also indicate that cultivation and natural restoration influenced the bacterial community structure and diversity. Natural restoration can significantly enhance the recovery of bacterial diversity; however, once the composition of the marshland bacterial community has been altered by cultivated disturbance, it might be difficult to restore to its original state. These findings highlight the importance of effectively managing the soil bacterial community to maintain a naturally functioning soil ecosystem.

    参考文献
    相似文献
    引证文献
引用本文

徐飞,蔡体久,杨雪,琚存勇,唐庆明.三江平原沼泽湿地垦殖及自然恢复对土壤细菌群落多样性的影响.生态学报,2016,36(22):7412~7421

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数: