Abstract:The Yellow River Delta Nature Reserve is selected as the research area, and the wetland vegetation biomass data measured in the field, landsat-8 image data acquired from the United States Geological Survey (USGS), and soil factor test data obtained by laboratory test were used as the data sources. The wetland vegetation biomass model has been established, and the quantitative biomass inversion model has been conducted by analyzing the correlation coefficient between Landsat-8 images, vegetation indices, and biomass measured in the field. By studying the relationship between the wetland vegetation biomass and soil water environmental factors, the key factors affecting the vegetation biomass were selected, and the spatial distribution rules of wetland vegetation biomass were analyzed in the Yellow River Delta Nature Reserve. The results showed that the correlation between dry weight of wetland vegetation aboveground biomass and remote sensing factors (band and vegetation indices) is relatively higher. The optimal inversion model is established using 10 factors as independent variables, including 5 vegetation indices (normalized difference vegetation index, NDVI; environmental vulnerability index, EVI; modified soil-adjusted vegetation index, MSAVI; difference vegetation index, DVI; and ratio vegetation index, RVI) and 5 bands (Band1, Band2, Band3, Band4, and Band6). The dry weight of wetland vegetation biomass is obviously divided into five classes according to the inversion calculation in the Yellow River Delta Nature Reserve. The least dry weight of wetland vegetation biomass is categorized as Class 1, and the highest dry weight of wetland vegetation biomass is categorized as Class 5, both of which occupied small areas. Class 1 and Class 5 areas are 82.23 km2 accounting for 13.35% and 72.16 km2 accounting for 11.71% of the total area of wetland vegetation in the study area, respectively. Furthermore, the area of the other classes (Class 2, Class 3, and Class 4) is larger than Class 1 and Class 5, and their dry weight of wetland vegetation biomass is moderate. Moreover, Class 2, Class 3, and Class 4 areas are 211.99 km2 accounting for 34.41%, 136.39 km2 accounting for 22.14%, and 113.29 km2 accounting for 18.39% of the total area of wetland vegetation in the study area, respectively. Among the environmental factors that affect the wetland vegetation biomass in the Yellow River Delta Nature Reserve, water depth has the greatest effect on the dry weight of Phragmites australis biomass. In addition, soil water has the greatest effect on the dry weight of Suaeda glauca biomass. The complex interactions of river water, groundwater, and seawater led to the spatial variation of salinity. Water and salt conditions are the leading factors causing the spatial differences of the predominant dry weight of vegetation biomass in the Yellow River Delta Nature Reserve. The dry weight of vegetation biomass in the Yellow River Delta Nature Reserve tends to decrease from land to ocean from the river course of the Yellow River to both riverbanks.