Abstract:In arid areas, soil water condition is the key factor for the desert ecosystem. An important part of the hydrologic cycle, infiltration is the only way for precipitation and surface water transfer to soil water. Soil water infiltration capacity profoundly affects the redistribution of precipitation, and is of crucial importance for the storage and utilization of precipitation. The Gurbanttunggut Desert is the largest fixed and semi-fixed desert in China. It is covered by well-developed biological soil crusts(mosses, lichens, alage, fungi, cyanobacteria and bacteria). In recent years, a number of studies have focused on the influence of biological soil crusts on the process of soil infiltration, but areas of uncertainty remain in the process. In this study, three typical types of biological soil crusts (moss, lichen and algal crusts) in the Gurbantunggut Desert were selected and an indoor soil column was used to simulate experiments to examine the effect of biological soil crusts on the process of soil infiltration, including changes in the infiltration rate, wetting front movement and cumulative water infiltration. The results indicated that the effect of biological soil crusts on soil water infiltration was significant. Firstly, all three types of biological soil crusts decreased the initial infiltration rate significantly, but they differed in the degree of the reduction. The moss crusts, lichen crusts and algal crusts decreased the initial infiltration rates by 36.10%,46.42% and 50.39% respectively. The moss, lichen(P<0.05)and algal crusts(P<0.05) also can decreased the stable infiltration rate by 16.50%,33.98% and 35.92% respectively. Secondly, movement of wetting front was slower in soils covered with these three types of biological soil crusts than in bare soil. The leakage time of soil under moss, lichen and algal crusts were respectively 2.13, 3.04, and 2.98 times that of bare soil. Thirdly, all three types of biological soil crusts reduced the cumulative infiltration volume. Relative to the bare soil, the reduction rates of moss, lichen and algal crusts are 16.10%,28.56% and 26.56% respectively. In simulated laboratory experiments, three typical models were used to simulate the water infiltration process in soils. The result showed that:In this experimental situation, the Kostiakov equation is most applicable to describe the infiltration processes of sandy soil covered by the three types of biological soil crusts. although the Horton equationwas the next best option.