Abstract:High Voltage Electrostatic Field (HVEF) as an environmental factor has been proved significantly influenced living beings. The rapid increase of HVEF in recent years is due to the industrial and household machines and appliances, high-voltage power grids and medical devices. Sitobion avenae (Fabricius) (Homoptera: Aphididae) is one of the most common pests of wheat. It damages plants by ingesting sap from the ears, stems, leaves, and other tender plant parts. Itis also known to transmit viruses (e.g., barley yellow dwarf virus) during feeding, thereby reducing wheat yield and quality. Additionally its characteristics of parthenogenesis and high fecundity render it a good subject for research into the adaptation and evolution of insects. Raw-data analysis of an age-stage, two-sex life table is possible even though aphids reproduce parthenogenetically. In comparison to traditional age-specific life tables, two-sex life table analysis offers the following advantages: since it takes variability into account, it is more realistic than analyses based solely on the means of development times; it deals with the entire population (males, females, and those that die before the adult stages); and in simulation studies, it takes into account the complete age-stage distribution of the population. The last point is important because while only specific stages are sampled in field studies, different stages have different susceptibilities to insecticides, and behavioral patterns vary widely between stages. To explore the influence of HVEF on S. avenae, the age-stage life table of S. avenae was established to evaluate its life-table parameters. Wheat seeds and S. avenae nymphs born within 24 h of the experiment were exposed to HVEF for 20 mi at three intensities: 2, 4 and 6kV/cm. The results showed that: (1) the intrinsic rate of increase (r) was significantly lower than ck(P < 0.05) at 2 and 4kV/cm, the minimum value was observed in the 20th and 10th generations respectively. (2) The net reproductive rate (R0), mean generation span (T), fecundity, adult longevity, and oviposition period of S. avenae exposed to HVEF were allsignificantly lower (P < 0.05) than those of control at early generations, but no differences were found at late generations. (3) The age-specific survival rates of S. avenae were significantly influenced by generation and HVEF. The growth and development of S. avenae was affected by the intensity of HVEF and the generation of the organism, and the interaction of the two factors was also significant. As is well known, chemical control is often used within an Integrated Pest Management (IPM) program to keep the numbers of pests below the economic threshold. However, farmers often increase the quantity and frequency of insecticide usage to prevent pest damage without regarding the consequences. We demonstrate that HVEF affects aphid growth, developmengt and survival, thus it may provide a new tool for aphid control.