Abstract:The effects of dust pollution on plant species depends largely on the plant's natural ‘dustproofing’ ability, which is a kind of multifunctional composite dust-control technology that has great value for both the environment and economy. Our study intended to determine which dominant tree species showed the greatest tolerance and adaptability in different dust pollution environments. We conducted long term monitoring and an adaptability analysis on four kinds of shrubs (osmanthus fragrans, schefflera octophylla, loropetalum chinense var.rnbrum and camellia sinensis) commonly found in industrial parks in southern China. Our study used potted plant samples in an indoor environment where we simulated industrial dust pollution. We measured the dust-retaining capability and leaf temperature of our potted plants using biological microscopic image analysis and a thermal infrared imager. Our results showed that leaf temperature increased as leaves were covered in dust, and this varied according to the amount of dust in the environment. Dust that contained alkaline matter and heavy metal elements had a stronger influence on our test plants. Thus, we suggest that any adaptability analysis of plants should take the specific characteristics of dust pollution into full consideration. Our results suggest that osmanthus fragrans was most tolerant to dust pollution, followed by schefflera octophylla, loropetalum chinense var.rnbrum, and finally camellia sinensis. Selecting plant species that have high dust-retaining capability, and low physiological and ecological responses to dust pollution is important for industrial parks. However, planners and designers of green spaces in industrial parks also need to consider the composition and quantity of dust pollution within each site, as this varies by type and frequency of business enterprises within each industrial park and will help inform plant selection decisions. Our results show that leaf surface temperature is an important predictor of a plant's physiological and ecological response to dust pollution, and further research should investigate how variation in leaf surface temperature could be used to develop an index of plant tolerance to environmental dust pollution. For existing industrial parks containing plants with relatively poor adaptability to dust pollution, we suggest implementing regular watering, cleaning and other manual dust removal methods to reduce the negative effects of dust particulate matter on plants. Meanwhile, the effects of dust (especially heavy metal dust), on plant root systems should be investigated. To ensure implementation of scientific management of green spaces in industrial parks, we advise creating a temperature alert and maintenance schedule that includes regular protective cleaning of plants.