Abstract:The Qinghai-Tibetan Plateau (QTP) is considered to be an ideal region in which to study the responses of terrestrial ecosystems to climate warming. Alpine meadows, a common ecosystem on the QTP, are extremely fragile and highly sensitive to increasing temperatures, and, once destroyed, are very unlikely to recover quickly, potentially leading to desertification of the site. It is therefore extremely important that we gain a full understanding of the changes in the floral communities of alpine meadows that will occur in response to climate warming on the QTP. In previous research, we established 20 experimental plots based on a randomized-block design in an alpine meadow on the QTP, which included five replicates of four treatments:control, warming alone, clipping alone, and interaction of warming and clipping. In the present study, we focused on the control and warming-alone plots and surveyed aboveground biomass (AGB), and belowground biomass (BGB) of vegetation in the 2012 and 2013 growing seasons (from May to September) in the two types of plots. The aim of this study was to examine the variations in biomass allocation and the relationship between biomass and environmental factors. The biomass indexes we focused on included AGB, BGB, and root-to-shoot ratio (RSR), with the environmental factors consisting of soil temperature and soil moisture at various depths (10, 20, 40, 60, and 100 cm). We found the followings. (1) The AGB, BGB, and RSR data fitted to normal distributions, where the frequency range of BGB was greater than that of RSR, which was in turn greater than that of AGB. Median and mean values of AGB, BGB, and RSR were all higher in the warming-alone treatment than in the control, where the increased amplitude of BGB with a coefficient of variation of 0.30 was larger than that of AGB (0.27). The coefficient of variation of RSR (0.33) was larger than that of both AGB and BGB in different treatments, illustrating that biomass variation resulted from the considerable difference between the above- and belowground environment. (2) AGB and BGB exhibited a highly significant functional relationship of the power exponent (R2=0.147, P<0.001), behaving as an allometric correlation, but with the allometry slowing in the warming-alone treatment (R2=0.102, P<0.05). (3) AGB was primarily influenced by deep-soil moisture and shallow-soil temperature, whereas BGB was most highly influenced by deep-soil moisture and deep-soil temperature. However, the effect of soil temperature on both AGB and BGB was greater than that of soil moisture. Soil temperature at a depth of 20 cm had a considerable effect on AGB (R=0.582, P<0.01) and RSR (R=-0.238, P<0.05), whereas soil temperature at a depth of 60 cm had a considerable effect on BGB (R=0.388, P<0.01). Soil moisture at a depth of 100 cm had a substantial effect on both AGB (R=0.423, P<0.01) and BGB (R=0.245, P<0.05). Based on these results, we conclude that shallow-soil temperature in warming conditions influences biomass allocation and induces a higher allocation of biomass to aboveground vegetation communities, whereas deep-soil moisture influences biomass production as a result of the thawing of frozen soil by the warming conditions.