Abstract:A bibliometric analysis method was used to identify the developmental trend of international research on nitrogen losses in farmlands as affected by nitrogen applications, based on peer-reviewed studies available in the ISI Web of Science since 1957. We also reviewed control and prevention measures for farmland nitrogen loss, with the same method. The bibliometric analysis showed that the current focus of research regarding nitrogen losses worldwide involved assessing and monitoring of the effects of nitrogen fertilization on water pollution and quality. Keywords included Groundwater, Water quality, Surface water, Nitrate pollution, Eutrophication, Contamination, Nonpoint source pollution, Lysimeter, Runoff, and Subsurface drainage, etc. Research institutions that contributed to a large number of research findings are mainly resided in large agricultural countries, including China, United States, and Canada, and the mainstream journals that included most relevant papers are published in the Netherlands, United States, and China. Literature analysis showed that nitrogen losses are site-specific because it can be influenced by precipitation, topography, soil properties, and forms, rates, timing and placement of fertilizers, as well as other management practices. Nitrogen losses in China (13.7-347 kg/hm2) was significantly higher than that of countries in Europe and North America (4-107 kg/hm2). On average, the fertilizer use is 357.3 kg/hm2 and nitrogen rate is 165.1 kg/hm2 in China, which was much higher than the world average application rates (fertilizer rate:87.5 kg/hm2; nitrogen rate:52.9 kg/hm2). As a result, nitrogen use efficiency during one crop growth period in China (17%) was significantly lower than the world average (58%). These results indicated that excessive fertilizer application and underutilization of nitrogen were main reasons for nitrogen losses to surface and ground water. By comprehensively analyzing prevention and control measures for farmland nitrogen losses, we found that reducing nitrogen losses from the source was the most effective measure. Optimizing agronomic management practices and intercepting nitrogen migration could reduce nitrogen losses by 15% to 82%. Among a large diversity of studies, the largest group of studies focused on optimizing nitrogen applications. However, faced with resource shortage, water quality deterioration, and food production pressure, future research focus should shift from nitrogen balance to study of the nitrogen cycle in the entire farmland ecosystem. Further, there is an urgent need to determine nitrogen fertilization thresholds (critical nitrogen levels resulting in risk of pollution) for water quality protection. Effective prevention and control measures for nitrogen losses will provide theoretical and technical supports to balance the conflicts among food demand, resource conservation, and environmental protection.