Abstract:Development of human society depends greatly on the utilization of water resources, with a corresponding deterioration of the ecological environment. Water shortages have become a global environmental problem. Inter-basin water transfer projects can improve the existing patterns of land and water resources, to achieve a rational allocation of water resources to facilitate sustainable social, economic, and environmental development. However, inter-basin water transfer projects will inevitably bring about adverse ecological effects, such as the deterioration of water quality, the loss of biogeographical integrity, frequent and drastic alterations of hydrological regimes, the loss of endemic biotas, etc. Therefore, specific objective appraisals are necessary, before embarking on such projects. The South-North Water Transfer Project is a multi-decade infrastructural mega-project in China; it is the largest of its kind in the world. In the present study, Yi County, which is located in the vicinity of the Middle Route of the South-North Water Transfer Project in Hebei Province, was selected as the subject of study. Through the interpretation of remote sensing images, three land use types in three different construction stages (pre-construction period, construction period, and post-construction period) were selected, and the dimidiate pixel model was used to extract vegetation coverage. The impacts of corridor type projects on landscape structure in surrounding areas can be analyzed by buffer analysis. The present study used four kinds of buffers, namely the 100 m range, 500 m range, 1000 m range, and 3000 m range. In addition, the canal, which was within the 100 m range was a key study area. The present study analyzed the dynamic changes of vegetation coverage, land use patterns, and the relative change rates of vegetation coverage with different buffers. The results show that the Inter-basin water transfer project:directly changed the composition and structure of the ecological system along the construction area; transformed the ecological system from its natural condition to one showing anthropogenic effects. This last finding is the main factor that influenced the dynamics of the ecological system in the area under study. The land use types along the canal varied within different stages of construction. With construction of the canal, inevitably, human interference gradually increased. In addition, the introduction of a relatively large construction site in the region, resulted in increased land areas either laid bare or used for waste disposal, and reduced farmlands and grasslands. The degree of fragmentation was increased, and there was a reduction in ecological function of the regional ecosystem. The construction of the canal had significant effects on vegetation coverage, over three periods of study, showing an increasing trend after first being reduced. During the pre-construction period, vegetation coverage in the 100 m range was significantly higher than it was in other buffers, but significantly lower than it was in the control plot. During the construction period, vegetation coverage in all buffers was significantly lower than it was in the control plot with the lowest coverage recorded in the 100 m range. After almost four years of recovery, vegetation coverage in the 100 m range increased considerably, attaining levels recorded in the 500 m range, but remained significantly lower than that observed in the control plot. The rate of relative change in vegetation coverage in the 100 m range decreased from 0.71 to 0.68 during the period of construction, then rebounded to 0.71 in the post-construction period, to attain the same rate as was recorded during pre-construction. The scope of main influence was the construction area within the range of 100 m; beyond which, the strength of ecological impact was greatly reduced.