Abstract:Landscape heterogeneity is closely related to soil differentiation. The Jianghan Plain is divided into three landscape types:Plain Lake, Gently Gradated Mounds, and Rolling Hills, delineated according to contour lines of 50 m and 100 m, based on DEM data. The overlay analysis of the soil and landscape type maps was done to extract data describing the soil subgroup patches, as well as their perimeters and areas, etc. in different landscape types. This analysis was supported by the ArcGIS10 platform. Then, some indices, such as the fractal dimension, average patch area, and stability index were calculated to quantitatively analyze the spatial differentiation of the soil in different landscape types. The results are as follows:(1) There is significant spatial differentiation of soil subgroups in different landscape types. The Rolling Hills landscape is mainly composed of zonal soils, including red soil and yellow brown soil. Arable soil types such as fluvo-aquic and paddy soil are very well developed in the Plain Lake landscape, while zonal and arable soils are equally represented in the Gently Gradated Mounds landscape. (2) Every subgroup soil with good connectivity exhibited a landscape selectivity bias. Arable soils with good connectivity appear to be mostly concentrated in the Plain Lake landscape, while the most concentrated zonal soils are found in the Gently Gradated Mounds and Rolling Hills landscapes. (3) The Plain Lake landscape on the Jianghan Plain is large enough that all soil subgroups were found to be well developed in that area. Thus, the differences among the fractal dimension (D values) or the stability index values of the different soil subgroups are larger, which can better reflect soil intrinsic characteristics. However, in the Gently Gradated Mounds landscape, soil development and evolution is restricted by space, so the boundaries of the soil subgroups are fragmented and the associated fractal dimension values (D values) are larger on average. The larger fractal dimension values (D values) reflect the more complex mosaic structures of the soil subgroup patches in that landscape. However, because the D values are universally larger in the Gently Gradated Mounds landscape, the differences among the fractal dimension values of the different soil subgroup patches are smaller, as are the stability index values of the soil subgroup patches. (4) The value of the fractal dimension, or the stability index of a soil subgroup, reveals the best-matched landscape type to some degree, which in turn provides the ideal conditions for the soil subgroup to develop or evolve well. This research improves our understanding of the evolution of soil, and facilitates the rational use and the directed breeding of soil resources.