Abstract:Both root growth and distribution are closely related to the growth of above ground organs, which subsequently affects the yield and quality of rice. It is important to understand the characteristics of root growth and distribution under environment of LTGS (low temperature and gleization soil), with the objectives of improving the management of rice fields and enhancing the tolerance capacity of rice under LTGS stress. Field experiments were carried out from 2012 to 2014 with 8 varieties (4 tolerance grades) of rice that were planted in a rice cultivation simulation system. The results showed that:1) The M (rate of absolute change) values for root number and root length were both higher than 0,whereas their P (rate of relative change) values were both lower than 0. These results demonstrate that although the root number and root length of rice plants are reduced, the roots can still grow under LTGS conditions. The decreased rate of root growth under LTGS environment varied among different rice varieties:it was significantly lower for Luyou 5 and Cyou 130, which both have a higher tolerance capacity for LTGS stress in comparison to Chuanguyou 204 and Xieyou 027. 2) Under LTGS environment, the crucial period for root growth at 0-10 cm soil was during the period from late May to early June; at 10-30 cm soil, the crucial period was late June; and at 30-50 cm soil, it was around June 30. 3) Under LTGS conditions, root number and root length both had a positive correlation with grains per panicle, number of filled grains, seed setting rate, and rice yield; and both had a negative correlation with effective panicle number and 1000-grain weight, during booting and heading stages. Therefore, root length and root number, especially those of white roots, can be used as an indicator to evaluate the tolerance capacity of rice to LTGS stress. 4) Under LTGS conditions, the correlations between root characteristics and yield composition differed among various soil layers. Total root number and total root length in 0-10 cm soil had a negative correlation with the number of effective tillers. White root number and white root length in 10-30 cm soil had a positive correlation with seed setting rate. Total root number and root length in 30-50 cm soil had a positive correlation with grains per panicle.