Abstract:In this study, the BIOLOG microporosity plate technology was employed to investigate the metabolic characteristics of microbial community in six woodlands with five typical types of forest soils, which included forest soils planted with tooth Oak(Quercus aliena var. acutidentata),chinese pine(Pinus tabuliformis),armand pine(Pinus armandii), pine and oak mixed, spruce(Picea asperata). The major findings include: (1) The average well color development (AWCD) of armand pine is the highest among the five kinds of typical forests, followed by tooth Oak1> spruce> chinese pine > tooth Oak2>pine and oak mixed, The AWCD value of tooth Oak woodlands located in different forest farms showed large differences among each other; (2) The index of soil microbial function diversity is consistent with the AWCD. The differences among six forest lands showed significant difference,. Significant difference was also observed for the utilization of six carbon source by soil microorganism in different forest components. (3) The principal component analysis showed that the soil microbial functional diversity among different soils were significant different. The sequence of comprehensive factor scores were armand pine > tooth Oak1> Chinese pine > chinese spruce > tooth Oak2 > pine and oak mixed. (4) Redundancy analysis shows that the comprehensive effect of soil pH, organic matter, total nitrogen, alkali hydrolyzable nitrogen, the available phosphorus and available potassium can significantly affect soil microbial community functional diversity, especially the available P and pH which were closely related to soil microbial functional diversity.